基于改进YOLOv5s的煤矸石目标检测算法
DOI:
CSTR:
作者:
作者单位:

1.河南理工大学电气工程与自动化学院 焦作 454000; 2.河南省煤矿装备智能检测与控制重点实验室 焦作 454000; 3.河南省智能装备直接驱动与控制国际联合实验室 焦作 454000

作者简介:

通讯作者:

中图分类号:

TP391.41;TD94

基金项目:

国家重点研发计划项目(2018YFC0604502)资助


Coal gangue target detection algorithm based on improved YOLOv5s
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China; 2.Key Laboratory of Intelligent Detection and Control, Henan of Coal Mine Equipment, Jiaozuo 454000, China; 3.International Joint Laboratory of Direct Drive and Control, Henan of Intelligent Equipment, Jiaozuo 454000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工业场景下煤矸石分拣任务检测精度低、分拣速度慢的问题,提出一种基于改进YOLOv5s的煤矸石目标检测算法。在主干网络的卷积层中加入轻量化注意力机制CBAM,以提升目标在复杂的煤渣环境中的特征表达的能力;其次,改进特征融合层为BIFPN,BIFPN结构进行了双向跨尺度连接和加权融合,以加强煤矸石浅层的特征信息和高层煤矸石位置信息,解决煤矸石颜色、纹理相近难以分类的问题;最后,在原算法DIoU的基础上增加对边界框高宽比考虑,以提升检验框检测的准确率。在工业生产环境中采集的10 000张煤矸石图像作为数据集对所提方法进行实验,实验表明,与改进前的YOLOv5s模型相比,在检测速度基本保持不变的前提下,改进算法平均精度mAP_0.5达到了93.3%,平均检测精度提高了5.1%,实现了对煤矸石进行目标检测的要求。

    Abstract:

    Aiming at the problems of low detection accuracy and slow sorting speed of coal gangue sorting tasks in industrial scenarios, a coal and gangue target detection algorithm based on improved YOLOv5s is proposed. A lightweight attention mechanism CBAM is added to convolutional layer of the backbone network to improve the ability of target feature expression in complex cinder environment. Secondly, the BIFPN structure is added to the feature fusion layer. The bidirectional cross-scale connection and weighted fusion are carried out in the BIFPN structure to strengthen the feature information of shallow layer of coal gangue and the location information of high-rise coal gangue, and solve the problem that the color and texture of coal gangue are similar and difficult to classify; Finally, on the basis of the original algorithm DIoU, the aspect ratio of the bounding box is added to improve the accuracy of the inspection box detection. The proposed method is tested by using 10 000 coal gangue images collected in an industrial production environment as a dataset. Experimental results show that in comparison with YOLOv5s model before the improvement, on the premise that the detection speed remains basically unchanging, average precision mAP_0.5 of the improved algorithm reaches 93.3%, and average detection precision is increased by 5.1%, which realizes the requirements for target detection of coal gangue.

    参考文献
    相似文献
    引证文献
引用本文

高如新,常嘉浩,杜亚博,刘群坡.基于改进YOLOv5s的煤矸石目标检测算法[J].电子测量技术,2023,46(13):95-101

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-22
  • 出版日期:
文章二维码