基于改进MobileNetV3烧结断面火焰图像识别
DOI:
CSTR:
作者:
作者单位:

华北理工大学电气工程学院 唐山 063210

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

河北省自然科学基金(E2021209037)、河北省省属高等学校基本科研业务费研究项目(JYG2020004)资助


Flame image recognition of sintering section based on improved MobileNetV3
Author:
Affiliation:

College of Electrical Engineering, North China University of Science and Technology,Tangshan 063210, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    烧结机尾断面火焰图像蕴含大量与烧结终点相关的特征信息,充分利用烧结火焰图像特征信息进行在线判断烧结终点状态,具有可行性及工程实际意义。针对烧结机尾断面火焰图像特征信息难以提取、识别精度低以及难以满足实时性等问题,提出一种基于改进的MobileNetV3烧结断面火焰图像识别算法。以MobileNetV3作为烧结终点火焰状态特征信息提取的基础模型,引入注意力机制;改进通道注意力结构,减少特征损失提高识别精度;引入空间注意力机制,设计双分支通道空间注意力模块精确捕捉了红火区在烧结断面火焰图像中的位置和内容信息;引入数据增强和余弦退火学习率来提高模型的泛化能力,并采用冻结训练策略加速模型收敛。在烧结火焰数据集上的实验表明,该算法能够充分利用烧结火焰图像中的特征信息,识别准确率达到97.54%,较改进前提高了6.41%。

    Abstract:

    The flame image of the sintering machine tail section contains many features related to the sintering endpoint. It is feasible and practical to make full use of the feature information of the sintering flame image to judge the state of the sintering endpoint online. Aiming at the problems of difficult extraction of flame image feature information of sintering machine tail section, low recognition accuracy, and difficulty meeting realtime requirements, an improved MobileNetV3 sintering section flame image recognition algorithm is proposed. MobileNetV3 is taken as the basic model for feature extraction of flame state at the sintering endpoint, and the attention mechanism is introduced; it improves the attention structure of the SE channel to solve the problem of weak resolution of features extracted from the original model; The introduction of Spatial Attention (SA) mechanism and the design of Two Branch Channel Spatial Attention (TBCSA) module accurately capture the position and content information of the red fire zone in the flame image of the sintering section; The data enhancement and cosine annealing learning rate are introduced to improve the generalization ability of the model, and the freezing training strategy is used to accelerate the model convergence. The experiment on the sintering flame data set shows that the algorithm can fully use the feature information in the sintering flame image, and the recognition accuracy reaches 97.54%, which is 6.41 percentage points higher than before.

    参考文献
    相似文献
    引证文献
引用本文

梁秀满,安金铭,曹晓华,曾凯,王福斌.基于改进MobileNetV3烧结断面火焰图像识别[J].电子测量技术,2023,46(14):182-

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-18
  • 出版日期:
文章二维码