基于小波包信息熵和SO-SVM的滚动轴承故障诊断
DOI:
CSTR:
作者:
作者单位:

安徽理工大学 淮南 232001

作者简介:

通讯作者:

中图分类号:

TH133.33

基金项目:


Fault diagnosis of rolling bearing based on wavelet packet entropy and SO-SVM
Author:
Affiliation:

Anhui University of Science and Technology,Huainan 232001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对滚动轴承振动信号的特征提取和故障诊断,提出了一种基于小波包信息熵和蛇优化算法(SO)优化支持向量机的滚动轴承故障诊断方法。使用小波包处理采集到的振动信号,构建小波包的能谱熵和系数熵,将构建的特征向量输入SO-SVM进行识别和分类;最终实现多故障模式识别,输出诊断结果。通过仿真实验表明,此方法对五组不同的样本诊断准确率达到99.17%~100%,且相比于果蝇算法优化支持向量机(FOA-SVM)和粒子群算法优化支持向量机(PSO-SVM)具有更高的故障识别分类效果。

    Abstract:

    Aiming at the problem of feature extraction and fault diagnosis of rolling bearing vibration signals, a fault diagnosis method of rolling bearing based on wavelet packet information entropy and support vector machine (SVM) optimized by snake optimization algorithm (SO) is proposed. The collected vibration signals are processed by using the wavelet packet, the energy spectrum entropy and the coefficient entropy of the wavelet packet are constructed, and the constructed feature vectors are input into the SO-SVM for identification and classification; Finally, the multi-fault pattern recognition is realized and the diagnosis results are output. The simulation results show that the diagnostic accuracy of this method for five different groups of samples reaches 99.17%~100%, and compared with FOA-SVM and PSO-SVM, it has a higher effect of fault recognition and classification.

    参考文献
    相似文献
    引证文献
引用本文

胡业林,马向阳,钱文月,宋晓.基于小波包信息熵和SO-SVM的滚动轴承故障诊断[J].电子测量技术,2023,46(14):80-

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-18
  • 出版日期:
文章二维码