基于IEWT-DELM的行星齿轮箱故障诊断
DOI:
CSTR:
作者:
作者单位:

1.中北大学机械工程学院 太原 030051; 2.中北大学先进制造技术山西省重点实验室 太原 030051

作者简介:

通讯作者:

中图分类号:

TH165

基金项目:

山西省重点实验室开放课题研究基金(XJZZ202002)、山西省青年基金(201901D211201)项目资助


Planetary gearbox fault diagnosis based on IEWT-DELM
Author:
Affiliation:

1.School of Mechanical Engineering, North University of China,Taiyuan 030051, China; 2.Advanced Manufacturing Technology Key Laboratory of Shanxi Province,Taiyuan 030051,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在恶劣情况下行星齿轮箱特征难以提取以及多种故障状态下难以准确分类这种问题,提出在经验小波变换基础上将原有频谱分解替换为在噪声干扰下更为稳定的尺度谱分解的改进经验小波变换与深度极限学习机相结合的故障诊断方法。首先,将行星齿轮箱不同故障工况下的信号利用改进经验小波变换分别进行降噪处理并提取各阶调频-调幅分量,之后选取包络幅值峭度较高的前6个分量多尺度样本熵作为故障特征集,输入到深度极限学习机中进行故障诊断分类,行星齿轮箱故障诊断试验表明:与EWT、EMD与DELM结合的故障诊断准确率相比,该方法故障平均识别率可达97.6%,具有一定的有效性。

    Abstract:

    Aiming at the problem that it is difficult to extract the features of planetary gearboxes under harsh conditions and difficult to classify accurately under various fault states. Based on the Empirical Wavelet Transform, the Improved Empirical Wavelet Transform is proposed, which replaces the original spectrum decomposition with the scale-spectrum decomposition which is more stable under noise interference. A fault diagnosis method combining Improved Empirical Wavelet Transform and Deep Extreme learning machine. Firstly, the signals of the planetary gearbox under different fault conditions are denoised by IEWT respectively and the FM-AM components of each order are extracted. Then, Multiscale sample entropy of the first six components with higher Envelope spectrum kurtosis was selected as the fault feature set and input into DELM for fault diagnosis and classification. The results of planetary gearbox fault diagnosis test show that compared with the fault diagnosis accuracy of EWT, EMD and DELM, the average fault recognition rate of this method can reach 97.6%, which has certain effectiveness.

    参考文献
    相似文献
    引证文献
引用本文

贺全玲,魏秀业,赵峰,王佳宁.基于IEWT-DELM的行星齿轮箱故障诊断[J].电子测量技术,2023,46(3):190-196

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-26
  • 出版日期:
文章二维码