基于注意力机制和空洞卷积的瞳孔定位算法
DOI:
CSTR:
作者:
作者单位:

大连理工大学信息与通信工程学院 大连 116081

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

大连医科大学附属第二医院科临床能力提升“1+X”计划交叉学科创新项目(2022JCXKZD03)、国家重点研发计划项目(2018YFE0197700)、中央高校基本科研业务费专项(DUT22YG110)资助


Pupil location algorithm based on Attention Gate and dilated convolution
Author:
Affiliation:

School of Information and Communication Engineering, Dalian University of Technology, Dalian 116081, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    瞳孔定位在人机交互中起着关键性作用,然而由于反射、眨眼和睫毛遮挡等噪声以及瞳孔位置不居中、运动导致模糊等问题,使得瞳孔中心定位的准确率下降、鲁棒性减弱,从而导致精确地定位瞳孔仍存在巨大困难。为此,本文提出一种基于注意力机制和空洞卷积的瞳孔检测定位算法。该算法以UNet的编码解码结构为基础,编码部分采用VGG16并引入空洞卷积,以充分地提取特征,解码部分加入Attention Gate,使得模型具有更好的鲁棒性。然后,使用最小二乘法对网络输出的瞳孔分割图进行拟合,最终根据拟合图像获取瞳孔中心坐标。本算法使用ExCuSe公开的24个数据集进行验证,实验表明该算法可以准确的定位瞳孔位置,平均检测率可达到926%。

    Abstract:

    Pupil location plays a key role in HumanComputer Interaction. However, due to the noise of reflection, blink and eyelash occlusion, as well as the pupils at the edge of image and blurred due to movement, the accuracy and robustness of pupil center location are reduced, which leads to great difficulties in accurate pupil location. Therefore, this paper proposes a pupil detection and location algorithm based on attention mechanism and cavity convolution. The algorithm is based on the codingdecoding structure of UNet, VGG16 is used in the coding part and dilated convolution is introduced to fully extract features, Attention Gate is added in the decoding part to make the model more robust. Then, the least square method is used to fit the pupil segmentation map output by the network. Finally, the pupil center coordinates are obtained according to the fitted image. The algorithm is verified by 24 data sets that are publicly available. Experiments show that the algorithm can accurately locate the pupil position, and the average detection rate can reach 92.6%.

    参考文献
    相似文献
    引证文献
引用本文

孙语,刘文龙,蒋茂松.基于注意力机制和空洞卷积的瞳孔定位算法[J].电子测量技术,2023,46(15):126-132

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-08
  • 出版日期:
文章二维码