基于CBE-YOLOv5的钢材表面缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

中北大学仪器与电子学院 太原 030051

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金重点项目(62131018)、山西省基础研究计划项目(202103021222012)资助


Detection method of steel surface defects based on CBE-YOLOv5
Author:
Affiliation:

School of Instrument and Electronics, North University of China, Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对钢材表面缺陷种类多,背景干扰强且尺度变化多样导致的检测效率低、精度差的问题,提出了一种钢材表面缺陷检测算法CBEYOLOv5。在YOLOv5算法基础上进行改进,通过主干采用坐标注意力机制,加强对目标的关注,提高特征提取能力;用BiFPN作为特征提取网络,给出有效的特征对应权重,以充分融合不同尺度的特征,并通过EIOU来计算模型损失,使模型能更精确的回归。在公开数据集NEUDET上的实验结果表明,CBEYOLOv5算法mAP为755%,较YOLOv5提高了38%,检测速度也高于一些常见的目标检测算法,能够更准确、更快速地检测到钢材表面的缺陷。

    Abstract:

    Aiming at the problems of low detection efficiency and poor accuracy caused by the variety of steel surface defects, strong background interference and various scale changes, this paper proposes a steel surface defect detection algorithm: CBEYOLOv5. On the basis of YOLOv5 algorithm, improve the ability of feature extraction by using coordinate attention mechanism in the trunk to strengthen the focus on the target; BiFPN is used as a special extraction network, and effective feature corresponding weights are given to fully integrate features of different scales. The model loss is calculated through EIOU, so that the model can be regressed more accurately. The experimental results on the public dataset NEUDET show that the CBEYOLOv5 algorithm mAP is 755%, 38% higher than YOLOv5, and the detection speed is also higher than some common target detection algorithms.,it can detect the defects on the steel surface more accurately and quickly.

    参考文献
    相似文献
    引证文献
引用本文

赵林熔,甄国涌,储成群,单彦虎.基于CBE-YOLOv5的钢材表面缺陷检测方法[J].电子测量技术,2023,46(15):73-80

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-08
  • 出版日期:
文章二维码