基于一维卷积神经网络的列车异响识别系统研究
DOI:
CSTR:
作者:
作者单位:

1.西南交通大学机械工程学院 成都 610031; 2.西南交通大学牵引动力国家重点实验室 成都 610031

作者简介:

通讯作者:

中图分类号:

TP 277

基金项目:

四川科技厅重点研发项目(2020YFG0124)、成都科技局重点研发项目(2019-YF05-01823-SN)、中国博士后科学基金(2020M682506)项目资助


Train abnormal sound recognition system based on 1D-CNN
Author:
Affiliation:

1.School of Mechanical Engineering, Southwest Jiaotong University,Chengdu 610031,China; 2.State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在列车行驶过程中,车内异响可作为反映车辆设备状态的信息源。为此提出一种基于1D-CNN的识别模型,对车辆异响进行识别,并设计列车异响识别系统。首先构建音频数据的试验样本库,然后利用MFCC提取异响数据样本的特征信息。针对列车噪声特征与车辆状态类型间的映射关系复杂、难解耦的问题,构建一种基于MFCC输入的1D-MCNN对异响所蕴含的故障信息进行识别分类。最后对识别模型进行实验与优化,确定MFCC阶数、学习率与批尺寸等模型参数,采用t-SNE算法、混淆矩阵进行模型特征提取的分析评价。试验结果表明该方法对列车异响识别诊断效果较好,准确率达98.38%。

    Abstract:

    The abnormal sound in the trains running can be used as information source to reflect the status of the vehicle equipment. For the reason that, a recognition model based on 1D-CNN was proposed to identify the abnormal sound of trains, and a set of recognition system for abnormal sound of trains was designed. Firstly, the experimental sample library of audio data was constructed. Then MFCC was used to extract the characteristic information of abnormal sound data samples. Aiming at the complex mapping relationship between train noise features and vehicle state types, a 1D-MCNN based on MFCC input was constructed to identify and classify the fault information contained in abnormal sound. Finally, the model parameters such as MFCC order, learning rate and batch size are determined by experiments and optimization. The t-SNE algorithm and confusion matrix were used to analyze the model feature extraction ability. The results show that the method is effective for the identification and diagnosis of abnormal sound of trains and its accuracy rate reaches 98.38%.

    参考文献
    相似文献
    引证文献
引用本文

付孟新,郭世伟,王泽兴,丁建明.基于一维卷积神经网络的列车异响识别系统研究[J].电子测量技术,2023,46(14):9-

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-18
  • 出版日期:
文章二维码