基于孪生网络的小样本轮胎花纹验证算法
DOI:
CSTR:
作者:
作者单位:

1.上海大学通信与信息工程学院 上海 200444; 2.东南大学成贤学院电子与计算机学院 南京 210088

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金(62175142,61875118)项目资助


Small sample tire pattern verification algorithm based on siamese network
Author:
Affiliation:

1.School of Communication and Information Engineering, Shanghai University,Shanghai 200444, China; 2.School of Electron and Computer, Southeast University Chengxian College,Nanjing 210088, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为推进车辆安全检查中同轴轮胎类型判别自动化的实现,提出一种基于孪生网络的轮胎花纹图像验证算法。该算法面向小样本轮胎花纹图像,在孪生网络的基础架构上,增加方向矫正的图像预处理模块,实现轮胎花纹的对齐,消除轮胎图像间明显纹理的方向特征差异;在其子网络的低层级卷积网络中使用Gabor方向滤波器,提升网络对轮胎花纹纹理特征的学习速度以及对不同质量轮胎图像识别的鲁棒性。在CIIP_TPID和WTP数据集上的实验表明,该算法的准确率分别达到0926和0849。

    Abstract:

    To promote the automatic realization of coaxial tire type discrimination in vehicle safety inspection, a tire pattern image verification algorithm based on siamese network was proposed. The algorithm is oriented to the tire pattern images of small data sets. On the infrastructure of the siamese network, an image preprocessing module of orientation correction is added to realize the alignment of tire patterns and eliminate the obvious orientation difference between tire images. The Gabor Orientation Filters are used in the lowlevel convolutional network of its subnetwork to improve the learning speed of the network on tire pattern texture features and the robustness of tire image recognition with different quality. Experimental results on CIIP_TPID and WTP datasets show that the accuracy of the proposed algorithm is 0926 and 0849 respectively.

    参考文献
    相似文献
    引证文献
引用本文

夏煜丹,刘书朋,田静,商娅娜,陈娜.基于孪生网络的小样本轮胎花纹验证算法[J].电子测量技术,2023,46(16):165-171

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-04
  • 出版日期:
文章二维码