Abstract:Aiming at the problems of low efficiency, high cost, insufficient automatic detection label samples and high missed detection rate in the surface defect detection of ceramic tiles, a selfsupervised learning model is proposed, without a large number of defect samples, the detection and location of common defects on the surface of ceramic tiles can be realized. Selfsupervised learning generates negative samples through sample expansion, and uses distributionaugmented contrastive learning to improve data irregularity and expand sample distribution, thereby reducing the consistency of comparative representation and making the representation feature distribution consistent with the classification target. Based on selfsupervised learning representation, a class of classifiers is constructed to achieve accurate anomaly detection and localization. The experimental results show that compared with the other two advanced methods, under the standard evaluation criterion(AUROC) of anomaly detection, the anomaly detection rate is increased by 371% and 274% respectively; the abnormal location rate increased by 122% and 401% respectively, with more reliable detection performance.