基于深度双Q网络的权值时变路网路径规划
DOI:
CSTR:
作者:
作者单位:

新疆大学电气工程学院 乌鲁木齐 830017

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

国家自然科学基金(51967019)、国家自然科学基金(52065064)、天山青年计划(2020Q066)项目资助


Timevarying road network path planning based on double deep Qnetwork
Author:
Affiliation:

School of Electrical Engineering, Xinjiang University, Urumchi 830017, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统路径规划方法无法根据城市路网权值时变特性规划最优路径的问题,提出了基于深度双Q网络的权值时变路网路径规划方法。首先,构建权值时变的城市路网模型,其中,路段各时间段权值由随机函数产生。然后,设计了状态特征、交互动作和奖励函数对权值时变路网路径规划问题进行建模,利用DDQN算法训练智能体来学习路网权值时变特性,最后根据建模后的状态特征实现权值时变路网的有效路径规划。实验结果表明,DDQN算法训练的智能体在权值时变路网中具有较好全局寻优能力。相比于滚动路径规划算法,所提方法在不同情况下规划的路径均最优,为权值时变路网的路径规划提供了一种新思路。

    Abstract:

    Aiming at the problem that the traditional path planning method can not plan the optimal path according to the timevarying characteristics of urban road network weight, a timevarying road network path planning method based on double deep Qnetwork was proposed. Firstly, the urban road network model with timevarying weights is constructed, in which the weights at each time period of the road segment are generated by random functions. Then, the state features, interaction actions and reward functions are designed to model the timevarying weight network path planning problem, and DDQN algorithm is used to train the agent to learn the timevarying weight characteristics of the road network. Finally, the path is planned according to the modeled state features to realize the effective path planning of the timevarying weight network. The experimental results show that the agent trained by DDQN algorithm has better global optimization ability in the timevarying weight road network. Compared with the rolling path planning algorithm, the proposed method can plan the optimal path under different circumstances, which provides a new idea for the path planning of the road network with timevarying weights.

    参考文献
    相似文献
    引证文献
引用本文

何鑫,马萍.基于深度双Q网络的权值时变路网路径规划[J].电子测量技术,2023,46(17):23-29

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-03
  • 出版日期:
文章二维码