Abstract:Rail corrugation with multiple wavelengths is often mixed on subway lines, and the current rail corrugation identification method is mainly suitable for rail corrugation with a single wavelength. Aiming at the problem of rail corrugation identification of mixed wavelengths, this paper proposes a multiwavelength rail corrugation identification algorithm based on ensemble empirical mode decompositionindependent component analysis. Firstly, the vehicletrack coupling dynamics model and the rail corrugation excitation model are established, and the vibration acceleration signal of the axle box under the action of the mixed wavelength rail corrugation is obtained through dynamic calculation. The ensemble empirical mode decomposition is performed on the calculated vibration acceleration signal of the axle box. Introduce the correlation coefficient to screen the qualified eigenmode components, calculate the energy average value of the selected eigenmode components, determine whether there is rail corrugation by setting the energy threshold, and finally selected eigenmode components and the source signal are reconstructed into a multidimensional signal, and the reconstructed multidimensional signal is used as the input matrix of the independent component analysis to solve the underdetermined problem of the independent component analysis, The center frequency of the positioning separation results determines the rail corrugation wavelength. In order to better verify the algorithm in this paper, the vertical vibration acceleration signal of axle box and the line irregularity level under the wave and wear excitation were collected on a subway line in Guangzhou, and the experimental data were analyzed using the algorithm of this paper. The results prove that under the mixed excitation of two different corrugation wavelengths of 16 and 315 mm, the method can still identify two different corrugation wavelengths, while the traditional wavelet packet energy entropy method and EEMD energy entropyWVD method can only identify corrugation with a wavelength of 16 mm with obvious vibration characteristics, in other words, these two methods cannot be applied to the problem of mixed wavelength corrugation identification. The research results of this paper provide theoretical support for the identification of rail corrugation with mixed wavelengths in subways.