YOLOF-CBAM:一种新的结直肠息肉实时分类与检测方法
DOI:
CSTR:
作者:
作者单位:

1.河北大学质量技术监督学院 保定 071002; 2.计量仪器与系统国家地方联合工程研究中心 保定 071002; 3.河北省新能源汽车动力系统轻量化技术创新中心 保定 071002; 4.河北大学电子信息工程学院 保定 071002

作者简介:

通讯作者:

中图分类号:

TP391;TH7

基金项目:

河北大学多学科交叉研究项目(DXK201914)、河北大学校长科研基金(XZJJ201914)、大学生创新创业训练计划创新训练项目(2022373)资助


YOLOF-CBAM: A new real-time classification and detection method for colorectal polyps
Author:
Affiliation:

1.College of Quality and Technical Supervision, Hebei University,Baoding 071002, China; 2.National and Local Joint Engineering Research Center for Measuring Instruments and Systems,Baoding 071002, China; 3.Hebei New Energy Vehicle Powertrain Lightweight Technology Innovation Center,Baoding 071002, China; 4.College of Electronic Information Engineering, Hebei University,Baoding 071002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前常见的计算机辅助检测系统对结肠镜图像中息肉的分类与检测准确性和实时性不足的问题,提出了一种以YOLOv4为基本框架,结合空间注意力机制与改进特征融合层的YOLOFCBAM模型,可对白光和窄带成像双模态内镜图像中的增生性息肉与腺瘤性息肉进行实时分类与检测。为了使息肉的特征提取更准确,在YOLOv4的主干网中增加CBAM模块,使网络特征提取层关注到更加重要的空间以及通道信息,抑制不必要特征向下传递;在此基础上,通过对特征融合层PANet进行剪枝操作优化网络结构,以此减少网络参数量,进一步提高模型的检测速度。为了对改进后的模型进行训练和测试,从河北大学附属医院收集了2 988张包含了白光和NBI的内镜图像,并按照9∶1的划分比例划分为训练集和测试集。实验结果表明,YOLOFCBAM在测试集上的mAP值为8644%,识别增生性息肉和腺瘤性息肉的召回率分别为8962%和8564%,精确率分别为9135%和8519%,且实时分类速度达到47 FPS,证明所提出的模型具有潜在的临床应用价值。

    Abstract:

    Aiming at the problem that the classification and detection of colorectal polyps by common computeraided detection systems are not accurate and realtime, a YOLFCBAM model combined with spatial attention mechanism (CBAM) and improved feature fusion layer based on YOLOv4 is proposed, which can classify and detect hyperplastic polyps and adenomatous polyps in dual modal of white light and NBI endoscopic images in real time. In order to make the feature extraction of polyps more accurate, a CBAM module is integrated to the backbone of YOLOv4, so that the network feature extraction layer pays attention to more important spatial and channel information, and inhibits the downward transmission of unnecessary features. On this basis, the network structure is optimized by pruning the feature fusion layer PANet to reduce the amount of network parameters and further improve the detection speed of the model. In order to train and test the improved model, 2 988 white light and NBI endoscopic images are collected from the Affiliated Hospital of Hebei University, and are divided into training set and test set at a ratio of 9∶1. Experimental results show that our proposed YOLOFCBAM achieves a mAP of 8644%, recalls of 8962% and 8564% for identifying hyperplastic and adenomatous polyps respectively, accuracies of 9135% and 8519% for identifying hyperplastic and adenomatous polyps respectively, and a classification speed of 47 FPS on the test set, which proves that the proposed model has potential clinical application value.

    参考文献
    相似文献
    引证文献
引用本文

杨昆,孙宇锋,汪世伟,路宇飞,薛林雁. YOLOF-CBAM:一种新的结直肠息肉实时分类与检测方法[J].电子测量技术,2023,46(16):138-147

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-04
  • 出版日期:
文章二维码