基于改进YOLOv5的输电线路鸟巢缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

青岛理工大学信息与控制工程学院 青岛 266520

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

山东省自然科学基金(ZR2020QF101)项目资助


Improved YOLOv5-based bird′s nest defect detection method for transmission lines
Author:
Affiliation:

School of Information and Control Engineering, Qingdao University of Technology,Qingdao 266520, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    鸟巢侵占是输电线路经常发生的一个故障情况。鸟类在铁塔上筑巢将会影响铁塔的绝缘性能,造成跳闸事故的发生。传统的输电线路鸟巢识别方法效率低且安全性不足。为此,本文提出了一种改进YOLOv5模型的输电线路鸟巢检测算法。通过在主干网络中加入CBAM注意力模块,以较小的计算代价提升主干网络的特征提取能力。在颈部网络中引入自适应特征融合模块替换原始结构,加强多尺度特征融合效果。使用更加稳定和平滑的Mish激活函数作为激活函数,以提升分类精度和泛化能力。实验结果表明,相较于原始YOLOv5s模型,改进方法在召回率以及平均精度均值方面分别提升4.4%和2.3%。对于遮挡目标以及远近距离目标均表现出良好的性能,验证了改进方法的有效性。

    Abstract:

    Bird′s nest encroachment is a frequent fault of transmission lines. Birds nesting on the tower will affect the insulation performance of the tower, resulting in tripping accidents. Traditional bird′s nest identification methods for transmission lines are inefficient and lack of security. Therefore, this paper proposes a bird′s nest detection algorithm for transmission lines based on improved YOLOv5 model. By adding CBAM attention module to the backbone network, the feature extraction ability of the backbone network can be improved with less computational cost. The adaptive feature fusion module is introduced into the neck network to replace the original structure and enhance the multi-scale feature fusion effect. The more stable and smooth Mish activation function is used as the activation function to improve the classification accuracy and generalization ability. Experimental results show that, compared with the original YOLOv5s model, the recall rate and average precision of the improved method are improved by 4.4% and 2.3% respectively. It shows good performance for occlusion targets and near-far targets, which verifies the effectiveness of the improved method.

    参考文献
    相似文献
    引证文献
引用本文

赵霖,王素珍,邵明伟,许浩.基于改进YOLOv5的输电线路鸟巢缺陷检测方法[J].电子测量技术,2023,46(3):157-165

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-26
  • 出版日期:
文章二维码