Abstract:Quantitative precipitation prediction based on radar echo extrapolation has broad prospects.It’s important to get accurate nowcasting.To this end,we propose GLnet,an efficient neural networksbased on Unet and SwinTransformer architecture equipped with two different attention modules CBAM and Nonlocal. The model has an asymmetric twoway feature extractor. In this way,the GLnet model extracts local and global features of radar echo images through convolution and windows selfattention mechanisms respectively.We create two datasets, NL20 and NL50, in Netherlands Precipitation Dataset by filtering the original precipitation dataset and choosing only the images with at least 20% and 50% of pixels containing any amount of rain respectively. We evaluate our approaches in NL20 and NL50. The experimental results show that compared with the classical model Unet,the mean square error is reduced by 144% and 106% respectively.