基于误差校正和自适应算子的SVR-PSO定位算法
DOI:
CSTR:
作者:
作者单位:

1.北京信息科技大学信息与通信工程学院 北京 100101; 2.北京信息科技大学信息与通信系统信息产业部重点实验室 北京 100101

作者简介:

通讯作者:

中图分类号:

TP391;TN911

基金项目:

北京市自然科学基金面上项目(4202024)、促进内涵发展科研水平提高项目重点研究培育项目(2020KYNH213)资助


SVRPSO localization algorithm based on error correction and adaptive operator
Author:
Affiliation:

1.School of Information and Communication Engineering, Beijing Information Science and Technology University,Beijing 100101, China; 2.Key Laboratory of Information and Communication Systems, Ministry of Information Industry,

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对室内复杂环境易受多径效应和非视距影响,导致RSSI值不可靠,影响SVR模型预测性能和系统定位精度的问题,提出一种基于误差校正和自适应算子的SVRPSO算法。该算法提出利用近邻参考标签的预测误差对待测标签的预测距离进行误差校正,从而弥补SVR模型因RSSI值不可靠而预测不准确的问题。然后构建求解待测标签位置坐标的非线性方程组,利用PSO算法迭代求解。针对标准PSO算法存在的易陷入局部最优且收敛速度慢的问题,设计了一种自适应算子,分别对PSO算法的惯性权重和学习因子进行改进。仿真结果表明,误差校正和自适应算子对提升室内定位精度均有一定的作用。与SVRPSO相比,系统平均定位精度提升了316%。在相同定位精度下,该算法使用的参考标签数量更少。

    Abstract:

    The complex indoor environment is easily affected by the multipath effect and nonlineofsight, which leads to the unreliable RSSI value and affects the prediction performance of SVR model and positioning accuracy of the system. To solve the problem, a SVRPSO algorithm based on error correction and adaptive operator is proposed. This algorithm proposes to use the prediction error of the nearest neighbor reference labels to correct the prediction distance of the measured label, so as to make up for the inaccurate prediction of SVR model due to the unreliable RSSI value. Then, the nonlinear equations of the measured label’s position coordinates is constructed and solved iteratively by PSO algorithm. Aiming at the problem that the standard PSO algorithm is easy to fall into local optimum and the convergence speed is slow, an adaptive operator is designed to improve the inertia weight and learning factor of PSO algorithm respectively. The simulation results show that both error correction and adaptive operator have certain effects on improving the indoor positioning accuracy. Compared with SVRPSO, the average positioning accuracy of the system is improved by 316%. With the same positioning accuracy, the algorithm uses fewer reference tags.

    参考文献
    相似文献
    引证文献
引用本文

路畅,崔英花.基于误差校正和自适应算子的SVR-PSO定位算法[J].电子测量技术,2023,46(17):17-22

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-03
  • 出版日期:
文章二维码