自适应子空间图的局部比值和判别分析
DOI:
CSTR:
作者:
作者单位:

广东工业大学信息工程学院 广州 510006

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

科技部重大研发计划(2018YFB1802100)、广东省重大研发计划(2018B010115001)、广东省面上自然科学基金 (2021A1515011141)、国家自然科学基金(61904041)项目资助


Local ratio sum discriminant analysis based on adaptive subspace graph
Author:
Affiliation:

College of Information Engineering, Guangdong University of Technology,Guangzhou 510006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着科技快速发展,数据维度急剧增加,传统降维算法难以寻找数据最优子空间,严重影响分类器性能,提出了基于自适应子空间图的局部比值和判别分析算法。提出了考虑局部结构的比值和判别分析算法;通过交替迭代的优化方法,避免了现有比值和优化方法寻找到的次优解;在最优子空间学习近邻相似图而不是原始空间,避免其受到原始空间噪声点的影响;引入了香农熵约束,避免出现平凡解;最后将样本投影到最优的子空间。在合成数据集和人脸数据集上,被提出的算法与大量主流的判别分析算法进行分类任务实验。大量实验结果表明,被提出的算法能够学习到更好判别性能的投影子空间,具有更优的分类效果。

    Abstract:

    With the rapid development of science and technology and the sharp increase of data dimensions, it is difficult for traditional dimensionality reduction algorithms to find the optimal subspace of the data, which seriously affects the performance of the classifier. This paper proposes a local ratio sum discriminant analysis based on adaptive subspace graph. The ratio sum discriminant analysis considering the local structure is proposed; the alternative iterative optimization method is used to avoid the suboptimal solution found by the existing ratio sum optimization methods; the nearest neighbor similarity graph is learned in the optimal subspace instead of the original space, so as to avoid it. Influenced by the original spatial noise points; the Shannon entropy constraint is introduced to avoid trivial solutions; finally, the samples are projected to the optimal subspace. On synthetic datasets and face datasets, the proposed algorithm is tested with a large number of SOTA discriminant analysis algorithms for classification tasks. A large number of experimental results show that the proposed algorithm can learn a projection subspace with better discriminant performance and has better classification effect.

    参考文献
    相似文献
    引证文献
引用本文

周科艺,方立煌,黄培杰,杨晓君.自适应子空间图的局部比值和判别分析[J].电子测量技术,2023,46(19):119-124

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-15
  • 出版日期:
文章二维码