基于自适应蚁群算法的AGV路径规划优化
DOI:
CSTR:
作者:
作者单位:

四川轻化工大学自动化与信息工程学院 宜宾 644000

作者简介:

通讯作者:

中图分类号:

TP18;TP242

基金项目:

四川省转移支付重点研发项目(21ZYZFZDYF0021)资助


Path planning optimization of AGV based on adaptive ant colony algorithm
Author:
Affiliation:

School of Automation and Information Engineering, Sichuan University of Science & Engineering,Yibin 644000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统蚁群算法在AGV路径规划中存在拐点数目较多,运行能耗较高等问题,提出一种改进的自适应蚁群算法。首先采用自适应参数调整方法,在迭代过程中不断调整信息素浓度和启发式信息的相对重要性,以增强蚂蚁搜索的目的性;其次引入多目标路径性能评价指标,在路径长度的单一指标基础上引入路径风险指标和拐点数目,以实现AGV路径规划的全局综合优化;然后提出一种奖惩机制更新信息素增量,针对不同程度评价指标的路径提供不同的信息素更新规则,避免算法陷入早熟;最后引入准均匀三次B样条平滑策略,进一步优化最优解。在20×20和30×30不同复杂程度的环境下进行仿真实验,本文改进算法相比传统蚁群算法在转弯次数上减少了113%~382%,在收敛速度上提升了798%~879%,验证了本文改进算法的有效性、可行性和优越性。

    Abstract:

    In view of the shortcoming of traditional ant colony algorithm in path planning of AGV, such as a large number of inflection points and high operating energy consumption, an improvement adaptive ant colony algorithm is proposed in this paper. Firstly, the adaptive parameter adjustment method to continuously adjust the relative importance of pheromone concentration and heuristic information in the iterative process to enhance the direction of ant search; Secondly, the multiobjective path performance evaluation index is introduced. Based on the single index of path length, the path risk index and the steering times are introduced to achieve the global comprehensive optimization of AGV path planning; Then a reward and punishment mechanism is proposed to update the pheromone increment, which provides different pheromone update rules for the paths of different evaluation indicators to avoid the algorithm falling into premature; Finally, the quasi uniform cubic Bspline smoothing strategy is introduced to further optimize the optimal solution. At 20×20 and 30×30 Simulation experiments are carried out in different complexity environments. Compared with the traditional ACO, the steering times of improved ACO is reduced by 11.3%~38.2%, and the path optimization speed is increased by 79.8%~87.9%, which verifies the effectiveness, feasibility and superiority of the improved ACO.

    参考文献
    相似文献
    引证文献
引用本文

刘礼,刘勇,孙云权,郭涛.基于自适应蚁群算法的AGV路径规划优化[J].电子测量技术,2023,46(18):100-107

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-10
  • 出版日期:
文章二维码