基于算法优化的生物打印机电机调速方法研究
DOI:
CSTR:
作者:
作者单位:

太原理工大学信息与计算机学院 太原 030024

作者简介:

通讯作者:

中图分类号:

TP273-.2

基金项目:

山西省重点研发计划(202102030201012)、中央引导地方科技发展项目(YDZJSX2021C003)资助


Research on bioprinter motor speed regulation method based on algorithmic optimisation
Author:
Affiliation:

College of Information and Computer, Taiyuan University of Technology,Taiyuan 030024, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着3D打印技术的发展,其应用领域扩展至临床医学范畴,基于3D生物技术已经实现了对皮肤组织、细胞支架等组织器官的增材打印。3D生物打印机一般由永磁同步电机作为其移动平台驱动电机。为提高控制精度,传统方法通常采用遗传粒子群优化模糊规则等多重算法整定PI参数来控制电机,但机械地叠加算法使得算法复杂度增加,严重影响电机的控制效果。因此,本文采用分数阶PI控制代替传统PI控制,利用粒子群算法优化分数阶PI中增益、分数阶次数和模型参考自适应算法中的自适应机制,最终获取最优解。通过Simulink仿真表明,相比于传统PI控制和遗传粒子群优化模糊PI控制等方法,粒子群优化分数阶PI在电机响应速度方面分别提高了106%和56%,稳定性方面分别提高了813%和60%,适用于控制精度较高的3D生物打印机移动平台。

    Abstract:

    With the development of 3D printing technology, its application areas have been extended to clinical medicine, and 3D biotechnologybased additive printing of skin tissue, cellular scaffolds and other tissues and organs has been realized.3D bioprinter generally use permanent magnet synchronous motors as their mobile platform drive motors. Traditional methods usually use multiple algorithms such as genetic particle swarm optimization fuzzy rules to adjust PI parameters to achieve control. However, the mechanical superposition algorithm increases the complexity of the algorithm and seriously affects the performance of the motor control effect. Therefore, this paper adopts fractionalorder PI control instead of traditional PI control, and uses particle swarm optimization to optimize the gain, the number of fractional orders and the adaptive mechanism in the model reference adaptive system in fractionalorder PI to finally obtain the optimal solution. Simulink simulation shows that compared with traditional PI control and methods such as genetic particle swarm optimized fuzzy PI control, the particle swarm optimized fractional order PI improves the motor response speed by 106% and 56%, and the stability by 813% and 60%, respectively, and is suitable for 3D bioprinter mobile platform with high control accuracy.

    参考文献
    相似文献
    引证文献
引用本文

姚冠洲,郝润芳,菅傲群,康日晖,杨琨,禚凯.基于算法优化的生物打印机电机调速方法研究[J].电子测量技术,2023,46(17):8-16

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-03
  • 出版日期:
文章二维码