基于平滑滤波的多传感器异步融合方法研究
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学自动化学院 南京 210044; 2.常州大学怀德学院 靖江 214500

作者简介:

通讯作者:

中图分类号:

TP249

基金项目:

国家自然科学基金(51875293)、江苏省研究生实践创新项目(SJCX22_0358)资助


Research on asynchronous multisensor fusion location method based on smooth filtering
Author:
Affiliation:

1.School of Automation, Nanjing University of Information Science & Technology,Nanjing 210044, China; 2.Changzhou University Huaide College,Jingjiang 214500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人巴士在定位循迹过程中,采样信号受噪声方差、带宽和采样率的影响,易出现信号缺失或间断现象,加之相关滤波算法缺乏异步采样和平滑能力,导致定位失败。为了提高定位精度并补充缺失数据,本文基于异步扩展卡尔曼滤波和非因果滤波平滑,提出一种改进的传感器异步采样融合平滑算法。首先利用异步扩展卡尔曼滤波对连续时间随机微分方程进行指数离散化,以处理任意时刻的测量值,预测更新下一时刻状态值之后,引入非因果滤波平滑给定可用的初始方差信息,使噪声方差影响更小,估计性能更好。将本算法在无人巴士上进行物理实验验证,结果表明这种多传感器异步融合平滑算法在车辆行驶中效果良好,与异步卡尔曼滤波算法结果相比,可以达到优于05 m的定位精度,数据预测误差均有明显降低,提高了定位精度和补充缺失数据。

    Abstract:

    In the process of location and tracking of unmanned bus, the sampling signal is affected by noise variance, bandwidth and sampling rate, which is prone to signal loss or discontinuity. In addition, the related filtering algorithm lacks asynchronous sampling and smoothing capabilities, leading to location failure. In order to improve the positioning accuracy and supplement missing data, this paper proposes an improved sensor asynchronous sampling fusion smoothing algorithm based on asynchronous extended Kalman filtering and non causal filtering smoothing. First, asynchronous extended Kalman filter is used to exponentially discretize the continuous time stochastic differential equation to process the measured value at any time. After the state value at the next time is predicted and updated, the non causal filter is introduced to smooth the given available initial variance information, so that the noise variance impact is smaller and the estimation performance is better. The algorithm is verified by physical experiments on an unmanned bus. The results show that this multisensor asynchronous fusion smoothing algorithm has a good effect in vehicle driving. Compared with the results of asynchronous Kalman filtering algorithm, it can achieve a positioning accuracy better than 05 m. The data prediction error is significantly reduced, and the positioning accuracy is improved and missing data is supplemented.

    参考文献
    相似文献
    引证文献
引用本文

刘云平,范嘉宇,苏东彦,马悦,尹泽凡.基于平滑滤波的多传感器异步融合方法研究[J].电子测量技术,2023,46(16):38-45

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-04
  • 出版日期:
文章二维码