辐射源个体识别中的对抗攻击研究
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院 南京 210044; 2.国防科技大学第六十三研究所 南京 210007

作者简介:

通讯作者:

中图分类号:

TN92;TP183

基金项目:


The research of adversarial attacks in specific emitter identification
Author:
Affiliation:

1.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology,Nanjing 210044, China; 2.The 63rd Research Institute of National University of Defense Technology,Nanjing 210007, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于深度学习的辐射源个体识别研究主要关注识别精度的提升,往往忽视了识别过程中对抗样本的威胁。针对上述问题,本文在增加辐射源个体类别并提升模型识别精度的同时分析研究了对抗样本对高识别率深度学习识别网络产生的影响。首先获取小样本ADSB信号,通过数据随机切片进行数据增强;再对原有网络进行微调并加入卷积注意力模块提高模型对辐射源个体信号的识别率;最后使用4种攻击算法生成对抗样本并在辐射源个体识别网络上进行测试。除此之外,还将攻击前后的信号样本转化为图片进行可视化比较,以在攻击成功率和攻击隐蔽性之间权衡。实验结果表明,优化后的高识别率模型也容易受到对抗样本的攻击,基于动量的迭代攻击效果最好,相比于快速梯度下降的攻击方法的攻击效果高出10%。

    Abstract:

    The research of specific emitter identification based on deep learning mainly focuses on the improvement of recognition accuracy, but often ignores the threat of adversarial samples in the recognition process. To solve the above problems, the experiment not only increases the category of emitter and improves the accuracy of model recognition, but also analyzes the impact of adversarial samples on deep learning recognition network with high recognition rate. In experiments, small samples of ADSB signals were obtained, and the data were sliced randomly. Then fine tune the original network and add convolutional attention module to improve the recognition rate of the model. Finally, generate adversarial samples were created by using four adversarial attack algorithms and tested on the network which was trained in advance. Additionally, images of signal examples before and after the attack were compared to maintain a balance between the attack success rate and the attack concealment. The results show that the model with high recognition rate is also vulnerable to adversarial samples, the momentum iteration method has the best performance among four algorithms, and the attack performance of momentum iteration method is more than 10% higher than the fast gradient sign method.

    参考文献
    相似文献
    引证文献
引用本文

刘丰汇,张治中,张涛,杨小蒙.辐射源个体识别中的对抗攻击研究[J].电子测量技术,2023,46(16):16-23

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-04
  • 出版日期:
文章二维码