复杂纹理布匹五类典型瑕疵图像检测算法研究
DOI:
CSTR:
作者:
作者单位:

厦门理工学院机械与汽车工程学院 厦门 361024

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Research on five types of typical defects image detection algorithms for complex textured fabrics
Author:
Affiliation:

School of Mechanical and Automotive Engineering, Xiamen University of Technology,Xiamen 361024, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂纹理布匹瑕疵检测这一纺织工业质检环节中的技术难点,基于深度卷积神经网络提出一种图像检测算法模型。首先对比选用YOLOv7tiny模型为算法参考框架然后进行优化改进,包括使用SimAM模块重构特征融合层,以提升模型对瑕疵局部特征的提取能力并抑制背景特征;采用SIoU优化坐标定位损失函数,以加快目标框的回归效率;引入FReLU激活函数,以增强非线性激活层对空间信息的利用能力,提升激活函数的空间敏感性。实验结果表明,该模型在复杂纹理布匹五类典型瑕疵的检测任务上的查准率和查全率都优于现有其他算法,mAP达到最高值805%,且模型大小仅为92 M,在PC端上单帧图像检测只需2113 ms。

    Abstract:

    Aiming at the technical difficulties in the quality inspection process of the textile industry for the defect detection of complexly textured fabrics, an image detection model based on a deep convolutional neural network is proposed. Firstly, the YOLOv7tiny model was selected as the reference frame of the algorithm, and then the optimization was carried out, including using the SimAM module to reconstruct the feature fusion layer so as to improve the model′s ability to extract local features of defects and suppress background features. SIoU was used to optimize the coordinate positioning loss function to speed up the regression efficiency of bounding boxes. The FReLU activation function is introduced to enhance the utilization of spatial information in the nonlinear activation layer and improve the spatial sensitivity of the activation function. The experimental results show that the accuracy and recall ratio of this model are better than those of other existing algorithms in the detection tasks of five typical defects for complex texture fabrics. The mAP reaches the maximum value of 805%, the size of the model is only 92 M, and the detection of a single frame image on the PC is only 2113 ms.

    参考文献
    相似文献
    引证文献
引用本文

吴志华,钟铭恩,谭佳威,许平平,赵昱廷.复杂纹理布匹五类典型瑕疵图像检测算法研究[J].电子测量技术,2023,46(16):57-63

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-04
  • 出版日期:
文章二维码