基于改进MobileViT网络的番茄叶片病害识别
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院 南京 210044; 2.南京信息工程大学江苏省 大气环境与装备技术协同创新中心 南京 210044

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Improved MobileViT network for tomato leaf disease identification
Author:
Affiliation:

1.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology,Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对卷积神经网络对番茄叶片型病害分类效果不佳的问题,提出了一种基于改进MobileViT轻量级网络的番茄病害识别方法。首先,删除输入和全局表征层的特征融合,将局部和全局表征层进行特征融合,使局部表征与全局表征更加密切相关;其次,为了避免模型在缩放时参数和FLOPS的大幅增加,在融合块中使用1×1卷积层替换3×3卷积层;然后,还添加了输入与融合块的残差结构,优化了网络模型中的更深层次;最后,将ReLU6激活函数替换成H-Swish激活函数,进一步提高了模型准确率。实验结果表明,改进后的MobileViT模型可以很好地实现番茄病害的识别,平均识别准确率达到99.16%。相较于其它的卷积神经网络模型,具有更高的识别精度。

    Abstract:

    To solve the problem of poor classification effect of convolution neural network on tomato leaf type diseases, a tomato disease identification method based on MobileViT lightweight network was proposed in this paper. Firstly, feature fusion of input and global representation is deleted and local and global representation are fused to make local representation more closely related to global representation. Secondly, in order to avoid the large increase of parameters and FLOPS when the model is scaled, the 3×3 convolution layer is replaced by 1×1 convolution layer in the fusion block. Then, the residual structure of input and fusion blocks is added to optimize the deeper level in the network model. Finally, the model accuracy is further improved by replacing the ReLU6 activation function with the H-Swish activation function. The experimental results showed that the improved MobileViT model can well recognize tomato diseases, with an average recognition accuracy of 99.16%. Compared with other convolution neural network models, it has higher recognition accuracy.

    参考文献
    相似文献
    引证文献
引用本文

陈晓,夏颖.基于改进MobileViT网络的番茄叶片病害识别[J].电子测量技术,2023,46(14):188-196

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-18
  • 出版日期:
文章二维码