基于自适应峰值检测的PDR算法研究
DOI:
CSTR:
作者:
作者单位:

重庆邮电大学自主导航与微系统重庆市重点实验室 重庆 400065

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

重庆市教委基础研究项目(KJQN202000605)资助


Research on PDR algorithm based on adaptive peak detection
Author:
Affiliation:

Autonomous Navigation and Microsystem Chongqing Key Laboratory,Chongqing University of Post and Telecommunications,Chongqing 400065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的行人航迹推算(PDR)算法只能用于正常行走的单一状态,难以满足实际应用需求,提出了一种基于自适应峰值检测的改进PDR算法。该算法将行人运动模式分为行走和跑步两种状态,充分考虑行人运动过程中加速度峰值和运动状态的关系,通过实验获得不同运动状态下的加速度峰值,从而设置动态阈值,实现不同状态下的计步检测和步长估计。将改进的PDR算法应用于行人定位,利用微惯性测量单元(IMU)获取的行人的运动数据,使用改进的峰值检测法对行人进行计步检测和状态识别,根据行人的运动状态采用自适应步长估计公式对步长进行估计,最后结合计算的航向得到行人的位置信息。实验结果表明,改进PDR算法具有良好的鲁棒性和较高的步态识别率,相比于传统的PDR算法,闭环误差降低了142%,有效提高了行人定位结果的精度。

    Abstract:

    Aiming at the fact that the traditional pedestrian dead reckoning (PDR) algorithm can only be used in a single state of normal walking, which is difficult to meet the practical application requirements, an improved PDR algorithm based on adaptive peak detection is proposed. The algorithm divides the pedestrian motion mode into walking and running states, fully considers the relationship between the peak acceleration and the motion state during the pedestrian movement, obtains the peak acceleration under different motion states through experiments, and sets dynamic thresholds to achieve step detection and step size estimation under different states. The improved PDR algorithm is applied to pedestrian positioning: using the pedestrian motion data obtained by the inertial measurement unit (IMU), the improved peak detection method is used to detect the pedestrian steps and identify the pedestrian status, and the adaptive step size estimation formula is used to estimate the step size according to the pedestrian motion status. Finally, the pedestrian position information is obtained by combining the calculated heading. The experimental results show that the improved PDR algorithm has good robustness and high gait recognition rate. Compared with the traditional PDR algorithm, the closedloop error is reduced by 142%, which effectively improves the accuracy of pedestrian positioning results.

    参考文献
    相似文献
    引证文献
引用本文

刘宇,李汪润,陈燕苹.基于自适应峰值检测的PDR算法研究[J].电子测量技术,2023,46(17):37-42

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-03
  • 出版日期:
文章二维码