基于改进LRCN的人体运动识别方法
DOI:
CSTR:
作者:
作者单位:

北京信息科技大学高动态导航技术北京市重点实验室 北京 100192

作者简介:

通讯作者:

中图分类号:

TP212

基金项目:

国家重点研发计划课题(2020YFC1511702)、北京市自然科学基金(4212003)、北京市科技新星计划交叉学科合作课题(202111)资助


Human motion recognition method based on improved LRCN
Author:
Affiliation:

Beijing Information Science and Technology University, Technology Beijing Key Laboratory of High Dynamic Navigation Technology,Beijing 100192, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对人体运动识别中数据特征提取不充分和识别准确率不高的问题,提出了一种改进长期循环卷积网络的人体运动识别模型。首先构建出一种由多层卷积神经网络和门控循环单元组成的LRCN模型。在此基础上构建内部和外部循环层,内部循环层作用是得到所选取时间窗内部时间特征和空间特征,外部循环层作用是从子序列数据中获取其所表征状态信息之间的特征相关性和时间相关性。提出的模型在3种公开数据集上验证,准确率均高于传统的LRCN模型,然后在自建数据集上进行测试验证,识别准确率为99.7%。实验结果表明该模型在识别准确率上高于原始模型,验证了该模型的可行性。

    Abstract:

    Aiming at the problems of inadequate feature extraction and low recognition accuracy in human motion recognition, a human motion recognition model based on improved Longterm Recurrent Convolutional Network was proposed. Firstly, a LRCN model composed of multi-layer convolutional neural network and gated circulation unit is constructed. On this basis, the internal and external cycle layers are constructed. The role of the internal cycle layer is to obtain the internal time characteristics and spatial characteristics of the selected time window, while the role of the external cycle layer is to obtain the feature correlation and time correlation between the state information represented by the subsequence data. The proposed model was verified on three public data sets with higher accuracy than the traditional LRCN model. Then, it was tested and verified on the self-built data sets, and the recognition accuracy was 99.7%. The experimental results show that the recognition accuracy of this model is higher than that of the original model, which verifies the feasibility of this model.

    参考文献
    相似文献
    引证文献
引用本文

李嘉智,刘宁.基于改进LRCN的人体运动识别方法[J].电子测量技术,2023,46(18):186-192

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-10
  • 出版日期:
文章二维码