基于双模态融合的线缆图像语义分割方法研究
DOI:
CSTR:
作者:
作者单位:

华南理工大学机械与汽车工程学院 广州 510640

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

广东省重点领域研发计划项目(2019B010154003)资助


Research on semantic segmentation of cable image based on bimodal fusion
Author:
Affiliation:

School of Mechanical and Automotive Engineering, South China University of Technology,Guangzhou 510640, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    线缆敷设时需要严格控制最小弯曲半径,线缆敷设图像准确分割是控制弯曲半径的基础,传统视觉方法、经典语义分割方法对复杂环境下线缆细长特征目标分割效果不佳。本文提出一种基于改进双模态融合语义分割网络ESANet的线缆语义分割方法,使用高效的SAGate代替ESANet中RGBD Fusion模块完成双模态特征校正与融合任务,融合特征分别同时参与后续两种模态的特征提取,实现细长特征线缆掩膜的准确分割。通过采集不同姿态的线缆RGB及对应深度图像进行实验,结果表明本文改进的ESANet网络对线缆等细长特征目标有较好好分割效果,较ESANet模型分割精度(mIoU)提升了399%,较RGB单模态语义分割网络SwiftNet精度提升768%,该方法可以推广到其它具有细长特征的目标分割任务中。

    Abstract:

    Minimum bending radius needs to be strictly controlled when laying cables. Accurate segmentation of cable laying image is the basis of controlling bending radius. Traditional visual and classical semantics segmentation methods do not work well for target segmentation of long and thin cables in complex environment. This paper presents a new cable semantics segmentation method based on improved dualmode fusion semantics for ESANet network. Instead of the RGBD Fusion module in ESANet, an efficient SAGate is used to complete the dualmode feature correction and fusion tasks. The fused features participate in the feature extraction of the subsequent two modes at the same time to achieve accurate segmentation of the thin feature cable mask. By collecting RGB and corresponding depth images of cables with different postures, the results show that the improved ESANet network has a good segmentation effect on slender feature targets such as cables, which is 399% higher than Net model segmentation accuracy (mIoU), and 7.68% higher than SwiftNet singlemode semantics segmentation network of RGB. This method can be extended to other target segmentation tasks with slender feature.

    参考文献
    相似文献
    引证文献
引用本文

曹国群,刘桂雄.基于双模态融合的线缆图像语义分割方法研究[J].电子测量技术,2023,46(10):184-188

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-09
  • 出版日期:
文章二维码