基于邻域信息的细粒度在线适应性测试
DOI:
CSTR:
作者:
作者单位:

合肥工业大学微电子学院 合肥 230009

作者简介:

通讯作者:

中图分类号:

TN407

基金项目:

国家重大科研仪器研制项目(62027815)、国家自然科学基金重点项目(61834006)资助


Fine-grained online adaptive test based on neighborhood information
Author:
Affiliation:

School of Microelectronics, Hefei University of Technology,Hefei 230009, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决晶圆测试成本过高的问题,在适应性测试领域已经提出了一些基于空间相关性的质量预测方案。但这些方案大多为了降低成本而牺牲了过多的预测准确度。针对这一问题,提出了一种细粒度质量预测方法。该方法利用故障晶粒邻域率对空间相关性模型预测后的晶粒进行分类,针对不同类型的晶粒选择不同的测试集。此外,在进行晶粒测试集选择前还引入了空间验证步骤,这能够保证整个方案的测试质量。实验结果表明,本方法相较于间接测试方法,平均测试逃逸率降低了83%,平均测试项节省率提升了14%;相较于动态部分平均测试方法,平均测试逃逸率降低了81%,平均测试项节省率提升了17%。

    Abstract:

    In order to solve the problem of high cost of wafer test, some quality prediction solutions based on spatial correlation have been proposed in the field of adaptive test. But most of these solutions sacrifice too much forecast accuracy in order to reduce costs. To solve this problem, this paper proposes a fine-grained quality prediction method. This method uses the Bad Neighbor Ratio to classify the grains predicted by the spatial correlation model, and selects different test sets for different types of grains. In addition, a spatial verification step is introduced before the selection of the die test set, which can ensure the test quality of the entire solution. The experimental results show that compared with the indirect test method, the average test escape rate of the proposed method is reduced by 83%, and the average test item saving rate is increased by 14%. Compared with the dynamic part average test method, the average test escape rate is reduced by 81%, and the average test item saving rate is increased by 17%.

    参考文献
    相似文献
    引证文献
引用本文

汤宇新,梁华国,潘宇琦,易茂祥,鲁迎春.基于邻域信息的细粒度在线适应性测试[J].电子测量技术,2023,46(19):140-147

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-15
  • 出版日期:
文章二维码