基于加权感受野和跨层融合的遥感小目标检测
DOI:
作者:
作者单位:

1.河南工业大学信息科学与工程学院;2.河南工业大学人工智能与大数据学院

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)(No. 62006071)、河南省科技攻关项目(No. 212102210149)


Remote sensing small target detection based on weighted receptive field and cross-layer fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对遥感图像中小目标特征易丢失、易受背景噪声影响和定位难的问题,本文对 YOLOX-S 目标检测模型进行改进。 使用二维离散余弦变换对 CBAM(Convolutional Block Attention Module)注意力模块进行改进并加入到主干网络当中,提高网 络对小目标的关注度;其次提出一种加权多重感受野空间金字塔池化模块,提升模型对多尺度目标尤其是小尺度目标的感知能 力;再者,采用跨层特征融合的思想,提出一种跨层注意力融合模块,使深层结构中尽可能保留更多的小目标特征;最后使用 EIoU(Efficient Intersection over Union)损失加强对小目标的定位能力。由大量实验分析可知,在 RSOD 数据集上,改进模型的 APs 值相对于基准模型提高了 5.1%,在 DIOR 数据集上提高了 2.4%,参数量仅增加了 1.01M,检测速度达到 93.6 frame·s-1,满足实 时性的检测要求。此外,相对于当前最新的目标检测模型,本文改进模型也具有一定优势。

    Abstract:

    Aiming at the problems that the features of small targets in remote sensing images are easily lost, easily affected by background noise and difficult to locate, this paper improves the YOLOX-S object detection model. Using two-dimensional discrete cosine transform to improve CBAM (Convolutional Block Attention Module) and add the improved CBAM to the backbone network, thus improving the awareness of network for small target; Secondly, a weighted multi-receptive field space pyramid pool module is proposed to improve the perception ability of multi-scale targets, especially small scale targets. Furthermore, a cross-layer attention fusion module is proposed based on the idea of cross-layer feature fusion, so that more features of small targets can be preserved in the deep structure. Finally, EIoU (Efficient Intersection over Union) loss is used to strengthen the ability of small target. According to a large number of experimental analysis, compared with the benchmark model, the APs value of the improved model is increased by 5.1% in the RSOD dataset, 2.4% in the DIOR dataset, the number of parameters is only increased by 1.01M, and the detection speed reaches 93.6 frame·s-1, meeting the real-time detection requirements. In addition, compared with the latest target detection model, the improved model also has some advantages.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-31
  • 最后修改日期:2023-03-08
  • 录用日期:2023-03-18
  • 在线发布日期:
  • 出版日期: