基于加权感受野和跨层融合的遥感小目标检测
DOI:
CSTR:
作者:
作者单位:

1.河南工业大学信息科学与工程学院 郑州 450001; 2.河南工业大学人工智能与大数据学院 郑州 450001

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(62006071)、河南省科技攻关项目(212102210149)资助


Remote sensing small target detection based on weighted receptive field and cross-layer fusion
Author:
Affiliation:

1.College of Information Science and Engineering, Henan University of Technology,Zhengzhou 450001, China; 2.College of Artificial Intelligence and Big Data, Henan University of Technology,Zhengzhou 450001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对遥感图像中小目标特征易丢失、易受背景噪声影响和定位难的问题,本文对YOLOX-S目标检测模型进行改进。使用二维离散余弦变换对CBAM注意力模块进行改进并加入到主干网络当中,提高网络对小目标的关注度;其次提出一种加权多重感受野空间金字塔池化模块,提升模型对多尺度目标尤其是小尺度目标的感知能力;采用跨层特征融合的思想,提出一种跨层注意力融合模块,使深层结构中尽可能保留更多的小目标特征;最后使用EIoU损失加强对小目标的定位能力。由大量实验分析可知,在RSOD数据集上,改进模型的APs值相对于基准模型提高了5.1%,在DIOR数据集上提高了2.4%,参数量仅增加了1.01 M,检测速度达到93.6 fps,满足实时性的检测要求。此外,相对于当前最新的目标检测模型,本文改进模型也具有一定优势。

    Abstract:

    Aiming at the problems that small target features in remote sensing images are easily lost, easily affected by background noise and difficult to locate, this paper improves the YOLOXS target detection model. Firstly, the CBAM is improved by using the twodimensional discrete cosine transform and added to the backbone network to improve the attention of the network to small targets; secondly, a weighted multireceptive spatial pyramid pooling module is proposed to improve the perception ability of the model to multiscale targets, especially to smallscale targets. Thirdly, using the idea of crosslayer feature fusion, a crosslayer attention fusion module is proposed to retain as many small target features as possible in the deep structure; finally, EIoU loss is used to enhance the localization ability of small targets. As shown by extensive experimental analysis, the APs value of the improved model improves by 51% relative to the baseline model on the RSOD dataset and by 24% on the DIOR dataset, and the number of parameters increases by only 1.01 M. The detection speed reaches 93.6 fps, which meets the detection requirements of real-time. In addition, the improved model in this paper also has certain advantages over the current stateoftheart target detection models.

    参考文献
    相似文献
    引证文献
引用本文

张绍文,史卫亚,张世强,王甜甜.基于加权感受野和跨层融合的遥感小目标检测[J].电子测量技术,2023,46(18):129-138

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-10
  • 出版日期:
文章二维码