基于改进YOLOv5s的煤矿电力设备缺陷检测
DOI:
CSTR:
作者:
作者单位:

1.江苏师范大学电气工程及自动化学院 徐州 221116; 2.中国矿业大学低碳能源与动力工程学院 徐州 221116

作者简介:

通讯作者:

中图分类号:

TD76

基金项目:

国家自然科学基金(62173165,61801197)、2022江苏省青蓝工程、徐州市科技计划项目(KC22290)、江苏省自然科学基金(BK20181004)、江苏省高等学校基础科学(自然科学)研究项目(21KJB520005)资助


Defect detection of coal mine power equipment based on improved YOLOv5s
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Jiangsu Normal University,Xuzhou 221116, China; 2.School of Low Carbon Energy and Power Engineering,China University of Mining and Technology,Xuzhou 221116, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对煤矿电力设备缺陷检测精度低的问题,提出了一种基于改进YOLOv5s的煤矿电力设备缺陷检测的方法。该方法主要包括3个方面的改进:首先,提出了一种多分支的坐标注意力模块,增强了模型获得缺陷区域信息的能力;其次,提出了一种特征融合网络模块,通过将主干网络和颈部网络之间非相邻的特征信息进行跨层连接,进一步增强了模型的特征表达及融合能力;最后,提出了一种快速空间金字塔池化平均池化模块,并将其嵌入颈部网络的路径融合网络之间,以提升网络浅层定位信息传递到深层的能力。实验结果表明,改进YOLOv5s模型的mAP@0.5提升了3.1%,F1分值提升了3%,满足煤矿电力设备缺陷的检测需求且具有更高的检测精度。

    Abstract:

    Aiming at the problem of low accuracy of defect detection of coal mine power equipment, this paper proposes a method for defect detection of coal mine power equipment based on an improved YOLOv5s. The method mainly includes three primary modifications. Firstly, a multibranched coordinate attention module is proposed, enhancing the ability of the model to obtain information about defect areas. Secondly, a feature fusion network module is proposed, which further enhances the feature expression and fusion ability of the model by connecting the non-adjacent feature information between the backbone network and the neck network across layers. Finally, a fast spatial pyramid pooling average pooling module is proposed, and the path of the neck network is embedded between the fusion networks to improve the ability of the shallow positioning information of the network to be transmitted to the deep layer. Experimental results demonstrate that the mAP@0.5 of improved YOLOv5s model in increased of 3.1%, and the F1 score is increased by 3%, meeting the detection demands of coal mine power equipment defects and has higher detection accuracy.

    参考文献
    相似文献
    引证文献
引用本文

金鑫,洪彬,于东升,栾声扬.基于改进YOLOv5s的煤矿电力设备缺陷检测[J].电子测量技术,2023,46(19):148-155

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-15
  • 出版日期:
文章二维码