基于两轴振动和多传感器融合的变压器绕组机械故障诊断
DOI:
CSTR:
作者:
作者单位:

河北工业大学省部共建电工装备可靠性与智能化国家重点实验室 天津 300130

作者简介:

通讯作者:

中图分类号:

TM412

基金项目:

国家自然科学基金(51877066)、河北省自然科学基金(E2022202187)项目资助


Transformer winding mechanical fault diagnosis based on two-axis vibration and multi-sensor fusion
Author:
Affiliation:

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology,Tianjin 300130, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统变压器绕组机械故障诊断方法中,仅考虑绕组单一方向振动信号且特征参数提取复杂、识别准确率低的问题。本文提出了一种基于两轴振动和多传感器融合的变压器绕组机械故障诊断方法。首先从绕组轴向、辐向振动相关性角度提出两轴振动关系图形作为特征图像;然后采用轻量级卷积神经网络MobileNet V2对不同传感器获得的图像数据进行训练;最后利用D-S证据理论对多维信息源识别结果进行融合,并做出最终决策。实验结果表明所提方法故障诊断准确率可达99.4%,与传统故障诊断方法相比,简化特征提取步骤,诊断准确率提高了6.2%以上,为变压器绕组机械故障诊断提供一种可行方案。

    Abstract:

    In the traditional transformer winding mechanical fault diagnosis method, only the winding axial vibration is considered, and the feature parameter extraction is complex and the recognition accuracy is low. This paper presents a mechanical fault diagnosis method for transformer windings based on two-axis vibration and multi-sensor fusion. Firstly, the two-axis vibration relationship graph is proposed as the feature image from the perspective of the axial and radial vibration correlation of the winding. Then the lightweight convolutional neural network MobileNet V2 is used to train the image data obtained by different sensors. Finally, the D-S evidence theory is used to fuse the multi-dimensional information source recognition results and make the final decision. The experimental results show that the fault diagnosis accuracy of the proposed method can reach 99.4%. Compared with the traditional fault classification method, the feature extraction step is simplified, and the diagnostic accuracy is improved by more than 6.2%, which provides a feasible scheme for mechanical fault diagnosis of transformer winding.

    参考文献
    相似文献
    引证文献
引用本文

杨文荣,石小晖,张雨蒙,赵宇航.基于两轴振动和多传感器融合的变压器绕组机械故障诊断[J].电子测量技术,2023,46(19):132-139

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-15
  • 出版日期:
文章二维码