基于四元数的两轮自平衡车控制系统研究
DOI:
CSTR:
作者:
作者单位:

西南林业大学大数据与智能工程学院 昆明 650224

作者简介:

通讯作者:

中图分类号:

TP272

基金项目:

云南省农业联合专项(202301BD070001-127)、西南林业大学森林生态大数据国家林业和草原局重点实验室重点项目(2022-BDK-05)、云南省教育厅科学研究基金(2023Y0703)项目资助


Research on the control system of two-wheeled self-balancing car based on quaternions
Author:
Affiliation:

College of Big Data and Intelligent Engineering, Southwest Forestry University,Kunming 650224, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高两轮自平衡控制系统的实时性和稳定性,提出了一种将四元数与PID相结合的两轮自平衡车控制机制。该机制基于四元数实现姿态角度的解算,基于PID算法实现平衡车的运动控制。该系统使用MPU-6050对平衡车的角速度和角加速度进行测量,使用编码器对电机转动速度进行测量,将这些测量数据作为平衡车控制系统的反馈,完成平衡车的控制,并可通过手机APP进行人机交互。在本文设计的控制算法下,平衡车在自平衡、载高度自平衡和载重自平衡三种场景下均可以保持良好的平衡性。采集了三种场景下平衡车俯仰角数据20 000组,方差分别为0.013、0.084、0.065。在静置状态下与卡尔曼滤波算法和互补滤波算法进行了对比,在5 000组的自平衡数据中平衡车的俯仰角方差为0.000 239,相较于其他两种算法更小。上述实验结果表明了本研究提出的控制机制能够在满足平衡车控制实时性的同时实现平衡车的稳定控制。

    Abstract:

    To enhance the real-time performance and stability of the two-wheeled self-balancing control system, a mechanism combining quaternion and PID algorithms has been proposed for the control of the two-wheeled self-balancing vehicle. This mechanism is based on quaternion calculation to determine the attitude angles and uses the PID algorithm to achieve motion control of the balancing vehicle. The system measures the angular velocity and angular acceleration of the balancing vehicle using MPU-6050 and measures the motor rotation speed using encoders. These measurement data are used as feedback for the balancing vehicle control system, which enables the control of the vehicle and human-machine interaction through a mobile app. Under the control algorithm designed in this paper, the balanced vehicle can maintain good balance in three scenarios: self-balancing, self-balancing with high load and self-balancing with heavy load.In total, 20 000 sets of data of the pitch angle of the balanced vehicle in the three scenarios were collected, with variances of 0.013, 0.084 and 0.065 respectively. When compared to the Kalman filter and complementary filter algorithms in a stationary state, the pitch angle variance of the balanced car in the 5 000 sets of self-balancing data was 0.000 239, smaller than the other two algorithms. These experimental results show that the proposed control mechanism can achieve stable control of the balanced vehicle while satisfying the real-time requirements.

    参考文献
    相似文献
    引证文献
引用本文

孔德肖,王甲一,李俊萩,张晴晖,强振平.基于四元数的两轮自平衡车控制系统研究[J].电子测量技术,2023,46(21):49-54

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-04
  • 出版日期:
文章二维码