基于多尺度通道注意力机制的行为识别方法
DOI:
CSTR:
作者:
作者单位:

1.中国科学院计算技术研究所 北京 100190; 2.北京交通大学 数据科学与智能决策研究院 北京 100091; 3.山东省智能计算技术研究院 济南 250102

作者简介:

通讯作者:

中图分类号:

TP2

基金项目:

国家重点研发计划(2020YFC2007104)、中国科学院战略性先导科技专项(A类)、黑土地保护与利用科技创新工程专项(XDA28040500)、北京市科技计划项目( Z221100002722009)、国家自然科学基金青年科学基金(62202455)、济南“高校20条”引进创新团队项目(2020GXRC030)资助


Human activity recognition method based on multi-scale channel attention mechanism
Author:
Affiliation:

1.Institute of Computing Technology, Chinese Academy of Sciences,Beijing 100190, China; 2.Beijing Jiaotong University, Institute of Data Science and Intelligent Decision Support, Beijing 100091, China; 3.Shandong Academy of Intelligent Computing Technology, Jinan 250102, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对可穿戴行为识别任务中小尺度的感受野难以提取长序列关联,大尺度感受野会导致特征压缩降低网络对信号特征的分辨率的问题。提出了一种基于多尺度通道注意力机制的行为识别方法。首先,从多个感受野提取时间特征和传感器通道特征,在保证信号具有低语义特征的同时提取信号的高语义特征;其次,在多尺度特征图之间建立跨通道关联,保证低语义特征和高语义特征之间的交互。多尺度通道注意力机制能够充分融合多尺度特征和多个特征图的关联信息,增强对微弱信号和剧烈信号的识别能力。在UCIHAR、DSADS、PAMAP2和UniMibSHAR数据集上进行了对比实验,结果表明MSCA-HAR方法相比目前的主流方法在4个数据集上的分类准确率分别提升0.43%,0.75%,2.90%和0.83%。

    Abstract:

    To address the problem that small-scale receptive fields for wearable activity recognition tasks make it difficult to extract long range associations and that large-scale receptive fields lead to feature compression reducing the network′s resolution for signal features. In this paper, we propose a multi-scale channel attention mechanism based human activity recognition method. Firstly, temporal features and sensor channel features are extracted from multiple receptive fields, so that high semantic features and low semantic features are extracted at the same time to ensure high resolution of features. Secondly, cross channel association is established between multi-scale feature maps to obtain the interaction between low semantic features and high semantic features. multi-scale channel attention mechanism can fully integrate multi-scale features and correlation information of multiple feature maps, enhancing the recognition ability of weak signals and violent signals. The comparative experiments on the UCIHAR, DSADS, PAMAP2 and UniMib-SHAR datasets show that the classification accuracy of our method is improved by 0.43%, 0.75%, 2.90% and 0.83% respectively compared with the state of the art methods.

    参考文献
    相似文献
    引证文献
引用本文

许晨炀,范非易,柯冠舟,沈建飞.基于多尺度通道注意力机制的行为识别方法[J].电子测量技术,2023,46(21):114-122

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-04
  • 出版日期:
文章二维码