融合注意力机制的轻量化道路交通标志检测方法
DOI:
CSTR:
作者:
作者单位:

1.重庆工商大学机械工程学院 重庆 400067; 2.重庆清平机械有限责任公司 重庆 401120

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0803)、重庆市教育委员会科学技术研究项目(KJQN20180812)、重庆市教委科技项目基金(KJQN202100845)、国家级大学生创新创业训练计划(920620009)项目资助


Lightweight road traffic sign detection method with attention mechanism
Author:
Affiliation:

1.School of Mechanical Engineering, Chongqing Technology and Business University,Chongqing 400067,China; 2.Chongqing Qing ping Machinery Co., Ltd., Chongqing 401120,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习在自动驾驶环境感知领域发展逐渐成熟,但在城市道路上存在遮挡、重叠、残缺、小目标等情况下的多目标交通标志检测研究仍是目前关注重点。针对道路上的交通标志检测问题提出改进的YOLOv3目标检测方法:首先在YOLOv3的主干网络中引入深度可分离卷积层,优化卷积神经网络中的计算参数以减少计算量;其次在主干网络中的残差模块后引入CBAM空间通道注意力机制,增强网络对弱小特征信息的提取能力,提高对小目标交通标志的检测精度;最后改进原网络中的IOU交并比函数,引入CIOU交并比函数,减少候选框筛选不准的问题,提高目标检测准确率。实验基于CSTSDB开源交通标志数据集和部分自建数据集进行,实验结果表明,改进后的YOLOv3网络相比原YOLOv3检测算法对道路多目标交通标志的准确率提高了7%,并且对重叠、遮挡、小目标等交通标志漏检率更低,速度更快,有一定实际意义。

    Abstract:

    Deep learning has been widely used in environment perception of autonomous driving field,Its application on multi-object traffic sign (such as shield, overlap, incomplete, and small goals) detection on urban roads is current research emphasis. This paper proposed an improved detection method based on YOLOv3. Firstly, it introduced the depthwise separable convolution layer into the backbone network of YOLOv3 to optimize the parameters and reduce the quantity of calculation in convolution neural network. Secondly, the spatial channel attention mechanism (CBAM) was introduced after the residual module in the backbone network to, aiming to Enhance the ability of the network to extract weak feature information, and improve the detection accuracy of small target traffic signs. Finally, the optimized intersection ratio function of IOU combining with the CIOU function, can improve the target detection accuracy of the candidate box screening. The experiments were conducted with CSTSDB open source traffic sign dataset and partial self-built dataset. The experimental results show that the improved YOLOv3 network improves the accuracy rate has been improved by about 7% than the original YOLOv3 detection algorithm, and has a lower leakage detection rate, faster speed, which has some practical significance.

    参考文献
    相似文献
    引证文献
引用本文

张建恒,杨智宇,夏利红,梁志威.融合注意力机制的轻量化道路交通标志检测方法[J].电子测量技术,2023,46(21):85-92

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-04
  • 出版日期:
文章二维码