基于对比学习的信息缺失手势识别新方法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学人工智能学院 南京 210044; 2.南京信息工程大学未来技术学院 南京 210044

作者简介:

通讯作者:

中图分类号:

TP3

基金项目:

江苏省大学生创新训练一般项目(202110300094Y)资助


Novel method for gesture recognition with missing information based on contrastive learning
Author:
Affiliation:

1.School of Artificial Intelligence, Nanjing University of Information Science and Technology,Nanjing 210044, China; 2.School of Future Technology, Nanjing University of Information Science and Technology,Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有深度学习模型识别信息缺失手势需要大量标注数据、更深的网络需要更多参数的问题,首先收集整理了一个信息缺失手势数据集IMG_NUIST,然后借鉴对比学习思想,提出了一个新的信息缺失手势识别模型CLGR,该模型通过对手势类内和类间差异度的对比约束提高模型特征学习性能。在两个经典数据集(ASL Alphabet和NUS I)和新提出的IMG_NUIST数据集上进行了广泛实验,消融实验表明对比学习思想能有效地将平均识别准确率提高至98.60%以上且收敛速度显著提升;对比实验表明本文所提模型计算复杂度比其它4个模型平均简化了41.4%,在NUS I和IMG_NUSIT数据集上的手势识别准确率超过四个对比方法,特别是在NUS I数据集上将识别准确率平均提高了17.35%,在ASL Alphabet数据集上的识别准确度仅比最优结果低0.43%。实验结果说明所提模型对于缺失手部部分信息和杂乱背景等问题的手势识别任务有显著效果,具有收敛速度更快、计算复杂度更少的优秀性能,有很好的实用价值。

    Abstract:

    Aiming at the problem that the information missing gestures recognition based on deep learning needs a large amount of labeled. The deeper the network needs more parameters, we first collect a data set called IMG_NUIST which consists of information missing gestures and full gestures. Then we propose a new gesture recognition model CLGR, the inter-class and intra-class similarities constraints enhance the feature learning performance of the model. Extensive experiments are conducted on two classic datasets (ASL Alphabet and NUS I) and the proposed IMG_NUIST dataset. The experimrnt results are shown as follows: 1) in the ablation study, contrastive learning can effectively improve recognition accuracy up to over 98.60% and the model convergence speed are significantly accelerated. 2) In the comparative experiments with two recent works and two contrastive learning models, the computational complexity of CLGR is 41.4% simpler than that of the two comparison models on average. CLCR can recognize the gestures with missing information and works well for those gestures with cluttered backgrounds. The gesture recognition accuracy of CLCR on the NUS I and IMG_NUSIT data sets outperforms the four comparison methods and is only 0.43% lower than the best result on ASL. Especially on the NUS I dataset, CLCR increases the recognition accuracy of gestures by 17.35% on average. The experimental results show that the proposed model is significantly effective for gesture recognition tasks with missing information and cluttered background with fast convergence speed and low computational complexity, and it is practical.

    参考文献
    相似文献
    引证文献
引用本文

卞雨玮,华立涛,周媛.基于对比学习的信息缺失手势识别新方法[J].电子测量技术,2023,46(7):180-186

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-18
  • 出版日期:
文章二维码