改进人工生态系统优化算法解决光伏 模型参数辨识问题
DOI:
CSTR:
作者:
作者单位:

郑州轻工业大学计算机与通信工程学院 郑州 450002

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金(51905494)、河南省高等教育改革研究与实践项目(2021SJGLX115Y)资助


Improved artificial ecosystem optimization algorithm to solve PV model parameter identification problem
Author:
Affiliation:

College of Computer and Communication Engineering, Zhengzhou University of Light Industry,Zhengzhou 450002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光伏模型同时具有非线性和多模态的特点,传统算法在对其参数识别时易陷入局部最优,且识别精度不足。提出了一种改进的人工生态系统优化算法(IAEO),通过引入非线性控制参数调整策略来平衡探索与开发的关系,利用混沌的遍历性和非重复性来增强算法的探索能力。仿真实验表明,在单、双和三二极管和光伏组件模型上,改进算法的参数识别精度均超过99.9%,相较于原算法的RMSE值在四种模型上平均提高5.5%,和五种先进算法对比具有较强的优势。采用厂商真实数据对薄膜、单晶和多晶3种光伏组件在不同的光照和温度条件下进行测试,改进算法在不同环境中依然保持较高的准确性和稳定性。

    Abstract:

    Photovoltaic models are both nonlinear and multimodal, and traditional algorithms are prone to fall into local optimality and insufficient recognition accuracy when identifying their parameters. In this paper, an improved artificial ecosystem optimization (IAEO) algorithm is proposed to balance exploration and exploitation by introducing a nonlinear control parameter adjustment strategy to enhance the exploration capability of the algorithm by exploiting the ergodic and non-repetitive nature of chaos. Simulation experiments show that the parameter identification accuracy of the improved algorithm exceeds 99.9% on both single, dual and triple diode and PV module models, and the RMSE value is improved by 5.5% on average on the four models compared to the original algorithm, which has a strong advantage compared to the five advanced algorithms. The improved algorithm still maintains high accuracy and stability in different environments when tested under different lighting and temperature conditions using real manufacturer data for three types of PV modules: thin-film, mono-crystalline and multi-crystalline.

    参考文献
    相似文献
    引证文献
引用本文

张伟伟,余晓秋,张卫正,文笑雨,王晓.改进人工生态系统优化算法解决光伏 模型参数辨识问题[J].电子测量技术,2023,46(21):72-78

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-04
  • 出版日期:
文章二维码