基于YOLOv5_PGS的轻量级水下生物识别目标检测
DOI:
CSTR:
作者:
作者单位:

青岛科技大学自动化与电子工程学院,青岛 266061

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

山东省自然科学基金(ZR2019MEE071)项目资助


Lightweight YOLOv5_PGS based objective detection for underwater biological identification
Author:
Affiliation:

College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在复杂自然环境下高效探测水下生物资源对中国渔业具有重要意义。针对复杂弱光环境下水下生物资源识别能力低、特征丢失严重等问题,本文提出了一种轻量级的水下生物检测算法。首先,针对水下图像颜色偏差大、清晰度低等问题,提出暗通道-对比限制-光衰减算法用于丰富图像特征信息。其次,引入GhostNet网络和构建C3CA模块提高模型的特征提取和融合能力。最后,对损失函数进行了改进,在降低总损失自由度的同时进一步提升算法的泛化能力。实验结果表明,YOLOv5_PGS算法在水下生物数据集上的检测精度达到了86.22%,较原YOLOv5L算法提高了0.48%。此外,本文算法模型的体积仅为20.4MB,比原模型减少了89.31%,检测速度提高了56.56%。实验结果表明,YOLOv5_PGS算法在水下图像处理中取得了良好的效果,为水下生物资源的实时检测提供了保证。

    Abstract:

    The efficient detection of the underwater biological resources in a complex natural environment is of great significance to China fishery. Aiming at the problems such as low recognition ability and serious feature loss of underwater biological resources in complex low-light environment, a lightweight underwater biological detection algorithm is proposed in this paper. First of all, aiming at the problems of large color deviation and low resolution of underwater images, a Dark channel-contrast limiting-optical attenuation algorithm is proposed to enrich the feature information of underwater images. Thereafter, GhostNet module and C3CA module are used to improve the fusion capability of feature extraction network. Finally, the loss function is improved to reduce the total loss freedom. The experimental results show that the mean average precision of the algorithm reaches 86.22%, which is 0.48% higher than that of the original YOLOv5L. Moreover, the volume of the proposed algorithm model is only 20.4 MB, which is about 89.31% less than that of the original model, and the detection speed of the proposed model is increased by 56.56%. The experimental results show that the improved algorithm achieves good results in underwater images and provides a guarantee for the real-time detection of underwater biological resources.

    参考文献
    相似文献
    引证文献
引用本文

周新,张春堂,樊春玲.基于YOLOv5_PGS的轻量级水下生物识别目标检测[J].电子测量技术,2023,46(21):168-175

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-04
  • 出版日期:
文章二维码