Abstract:In order to make better use of the relevant features in EEG signals and improve the classification performance of motor imagery EEG, a multilayer convolutional network (MTACNet) based on mixed features and parallel multiscale TCN modules was constructed. First, build a multilayer convolutional neural network based on mixed features, and embed an efficient channel attention mechanism in it, and select PReLU as the activation function to extract the temporal and spatial information in the EEG signal; then improve the TCN module, build a parallel multiscale timedomain feature extraction module, connect to a multilayer convolutional network, and further mine feature information at different time scales. Tested on the public dataset BCI_IV_2a and the selfcollected dataset SCU_MI_EEG, the average classification accuracy rates are 8615%, 7710%, and the standard deviations are 917%, 1358%, respectively. And for the selfcollected data set, a preprocessing method was designed to fuse multifrequency domain EEG signals for threechannel input. After preprocessing, the average classification accuracy rate increased by 329%. The experimental results show that: Compared with other methods, the classification network constructed in this paper has achieved relatively good classification results, and the designed preprocessing method can reduce the impact of complex environments and irrelevant interference factors on the classification results.