基于GA-BP模型的微带贴片天线设计和优化
DOI:
CSTR:
作者:
作者单位:

青岛大学电子信息学院 青岛 266000

作者简介:

通讯作者:

中图分类号:

TN823.24

基金项目:

国家自然科学基金(61904092,62181240278)、山东省高等学校青创团队计划(2022KJ141)项目资助


Design and optimization of micro-strip patch antenna based on GA-BP model
Author:
Affiliation:

College of Electronics and Information, Qingdao University,Qingdao 266000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前微波天线设计存在周期长、效率低等难题,设计了一种结合机器学习的多目标微带贴片天线自动设计和优化方法。本文通过遗传算法来寻优神经网络模型的初始权值和阈值,利用优化后的GA-BP模型预测多组天线结构参数在谐振点处的|S11|、-10 dB以下的有效区域面积及相应奖励值;还可以给定目标天线的电磁响应结果,通过该模型来反向预测天线的几何结构参数。结果表明,通过BP模型预测的决定系数R2可以达到0.968,而本文提出的GA-BP改进模型决定系数R2高达0.994,其预测能力显著优于传统的BP神经网络模型。

    Abstract:

    In order to solve the problems of long period and low efficiency in microwave antenna design, a multi-objective microstrip patch antenna automatic design and optimization method combined with machine learning was proposed. In this paper, by using genetic algorithm to optimize the initial weights and thresholds of the neural network model, the optimized GA-BP model was used to predicts the multiple groups sets of antenna parameters on the resonance point of |S11|, the effective area below -10 dB and the corresponding reward value. Given the electromagnetic response of the target antenna, the geometric parameters of the antenna can be also predicted by the GA-BP model. The results show that the determination coefficient R2 predicted by BP model is about 0.968, while the GA-BP model proposed in this paper is as high as 0.994, which is significantly better than the traditional BP neural network model.

    参考文献
    相似文献
    引证文献
引用本文

徐晴,王青洲,李元岳,贺英,姚钊.基于GA-BP模型的微带贴片天线设计和优化[J].电子测量技术,2023,46(21):55-62

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-04
  • 出版日期:
文章二维码