基于零样本学习的未知辐射源个体识别研究
DOI:
CSTR:
作者:
作者单位:

国防科技大学第六十三研究所 南京 210007

作者简介:

通讯作者:

中图分类号:

TN971.+1

基金项目:


Research on the unknown specific emitter identification based on zero shot learning
Author:
Affiliation:

The 63rd Research Institute, National University of Defense Technology,Nanjing 210007,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对辐射源个体识别基本遵循闭集假设无法有效识别未知类的问题,提出了一种基于零样本学习的辐射源个体识别模型实现对已知类和未知类辐射源个体识别。通过搭建卷积神经网络提取隐藏在辐射源信号数据下的语义特征,引入注意力模块增强对关键特征的关注,提出一种组合损失函数促使不同类辐射源信号在语义特征空间分离,根据辐射源信号在语义特征空间的分布进行辐射源个体分类识别。实验结果表明,相较于传统闭集识别,本文所提模型在能够在保持已知类识别率的前提下识别未知类且能在未知类之间区分,平均识别率达到90%以上。在工程化验证中,搭建的未知辐射源个体识别平台能够在室内及室外场景下实现快速准确识别。

    Abstract:

    Aiming at the problem that specific emitter identification basically follows the closed set hypothesis and cannot effectively identify unknown classes, a specific emitter identification model based on zero sample learning is proposed to identify known and unknown specific emitter. By building a convolution neural network to extract the semantic features hidden under the emitter signal data, the attention module is introduced to enhance the focus on key features, and a combined loss function is proposed to separate different types of emitter signals in the semantic feature space, and the specific emitter classification and recognition are carried out according to the distribution of emitter signals in the semantic feature space. The experimental results show that compared with traditional closed set recognition, the proposed model can recognize unknown classes and distinguish between unknown classes while maintaining the recognition rate of known classes, with an average recognition rate of more than 90%. In engineering verification, the established unknown specific emitter identification platform can achieve fast and accurate recognition in indoor and outdoor scenes.

    参考文献
    相似文献
    引证文献
引用本文

孙程远,杜奕航,张涛,杨小蒙.基于零样本学习的未知辐射源个体识别研究[J].电子测量技术,2023,46(22):41-48

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码