基于SSA-BiLSTM非线性组合方法的光伏功率预测
DOI:
CSTR:
作者:
作者单位:

1.三峡大学电气与新能源学院 宜昌 443002; 2.三峡大学电气与 新能源学院建设的省部级重点实验室(中心)宜昌 443002

作者简介:

通讯作者:

中图分类号:

TP271

基金项目:

煤燃烧国家重点实验室开放基金(FSKLCCA1607)、梯级水电站运行与控制湖北省重点实验室基金(2015KJX07)、产学研协同培养研究生实践创新能力机制研究项目(SDYJ201604)资助


Photovoltaic power forecasting based on SSA-BiLSTM nonlinear combination method
Author:
Affiliation:

1.College of Electrical and New Energy, China Three Gorges University,Yichang 443002, China;2.Provincial and Ministerial Key Laboratory (Center) of College of Electrical and New Energy of China Three Gorges University,Yichang 443002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用多种模型进行线性组合来对光伏功率预测,能有效避免收敛性差、可靠性低等缺点。线性组合模型中,将单一模型之间简为线性关系能简化组合模型计算,但会使预测精度降低。针对此问题,提出一种基于麻雀搜索算法(SSA)优化双向长短期记忆网络(BiLSTM)非线性组合方法的预测模型。首先,利用基于核改进的模糊C均值聚类算法(KFCM)和变分模态分解(VMD)对原始数据样本进行预处理;然后,采用Elman和SSA-BiLSTM对经过预处理后的光伏功率进行建模预测;最后,通过麻雀搜索算法优化双向长短期记忆网络对两个单一模型进行非线性组合,建立短期光伏功率非线性组合模型。通过某个光伏电站实测数据建立对比算例,结果表明所提组合模型在不同天气下的RMSE和MAE平均值分别为0.689 kW和0.540 kW,均优于其他对比模型,验证了所提组合模型的有效性和优越性。

    Abstract:

    The linear combination of various models can effectively avoid the disadvantages of poor convergence and low reliability for photovoltaic power forecasting. Simplifying the linear relationship between a single model in a linear combinatorial model can simplify the calculation of the combinatorial model, but reduce the prediction accuracy. Aiming at this problem, a prediction model based on Sparrow Search Algorithm (SSA) was proposed to optimize Bidirectional Long Short-Term Memory (BiLSTM) nonlinear combination method. Firstly, the Kernel-based Fuzzy C-means (KFCM) and Variational Modal Decomposition (VMD) are used to preprocess the original data samples. Then, using the Elman and SSA-BiLSTM forecast after photovoltaic (PV) power of pretreatment; Finally, the nonlinear combination of the two single models is optimized by the sparrow search algorithm to establish a nonlinear combination prediction model for short-term photovoltaic power. A comparative calculation example is established based on the measured data of a photovoltaic power plant, and the results showed that the average RMSE and MAE values of the proposed combined model under different weather conditions are 0.689 kW and 0.540 kW, respectively, which are superior to other comparative models, verifying the effectiveness and superiority of the proposed combined model.

    参考文献
    相似文献
    引证文献
引用本文

袁建华,蒋文军,李洪强,徐杰,高延玲.基于SSA-BiLSTM非线性组合方法的光伏功率预测[J].电子测量技术,2023,46(21):63-71

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-04
  • 出版日期:
文章二维码