基于SimAM-Ada YOLOv5的太阳能电池 表面缺陷检测
DOI:
CSTR:
作者:
作者单位:

山东理工大学电气与电子工程学院 淄博 255000

作者简介:

通讯作者:

中图分类号:

TP391.4;TM914.4;TP183

基金项目:

国家自然科学基金(62101310)、山东省自然科学基金(ZR2020MF127)项目资助


Surface defect detection of solar cells based on SimAM-Ada YOLOv5
Author:
Affiliation:

School of Electrical and Electronic Engineering, Shandong University of Technology,Zibo 255000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对太阳能电池图像背景复杂、缺陷形态多变及尺度差异大的特点,提出一种基于SimAM-Ada YOLOv5算法的太阳能电池缺陷检测方法。首先,将可变形卷积融入CBL模块,实现自适应学习特征尺度和感受野的大小;然后,将Ada池化融入SPP模块,增加缺陷信息的保留程度;最后,通过引入SimAM注意机制,进一步提高模型的特征提取能力。为了进一步优化改进YOLOv5算法,使用马赛克和MixUp融合数据增强、K-means++聚类锚盒算法、CIOU损失函数以及Hard-Swish激活函数,以达到增强改进模型性能的目的。实验结果表明,改进YOLOv5算法在太阳能电池电致发光图像数据集的检测mAP达到89.86%,相比于原始算法的mAP提高了8.07%,速度达到37.92 fps,在满足实时性的要求下可以更精准的完成太阳能电池缺陷检测任务。

    Abstract:

    In view of the complex background of solar cell image, changeable defect morphology and large scale difference, a method of solar cell defect detection based on SimAM-Ada Pool YOLOv5 algorithm was proposed. First, deformable convolution is incorporated into the CBL module to achieve adaptive learning of feature scales and perceptual field sizes; then, Ada Pool is incorporated into the SPP module to increase the degree of defect information retention; finally, the feature extraction capability of the model is further improved by introducing the SimAM attention mechanism. To further optimize and improve the YOLOv5 algorithm, the Mosaic and MixUp fusion data enhancement, K-means++ clustering anchor box algorithm, CIOU loss function, and Hard-Swish activation function are used to enhance the performance of the improved model. The experimental results show that the improved YOLOv5 algorithm achieves 89.86% detection mAP on the solar cell electroluminescence image dataset, which is 8.07% higher than the mAP of the original algorithm, with a speed of 37.92 fps, and can complete the solar cell defect detection task more accurately while meeting the real-time requirements.

    参考文献
    相似文献
    引证文献
引用本文

张猛,尹丽菊,周辉,邹国锋,秦怡鸣,李铭宇.基于SimAM-Ada YOLOv5的太阳能电池 表面缺陷检测[J].电子测量技术,2023,46(22):17-25

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码