基于CEEMDAN优化的轴承故障变分推断诊断算法
DOI:
CSTR:
作者:
作者单位:

北京信息科技大学信息与通信工程学院 北京 100192

作者简介:

通讯作者:

中图分类号:

TH133.33;TP18

基金项目:

企业委托基金(S1626046)项目资助


Variational inference algorithm for bearing fault diagnosis based on CEEMDAN optimization
Author:
Affiliation:

School of Information and Communication Engineering,Beijing Information Science & Technology University Beijing 100192, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有滚动轴承故障诊断研究中诊断准确率存在的不足,提出了一种基于本征模态函数优化自适应噪声集合经验模态分解和变分推断的滚动轴承故障诊断算法,该算法首先利用自适应噪声集合经验模态分解获得原始信号的本征模态函数分量,进而构建敏感本征模态函数分量筛选算法对自适应噪声集合经验模态分解方法进行优化,构成特征向量,对于训练集数据建立高斯混合模型,通过变分推断使高斯混合模型逼近特征向量概率分布的方法来实现滚动轴承故障诊断。通过实例验证了算法的有效性,与自适应噪声集合经验模态分解结合变分推断、局部特征尺度分解结合变分推断、优化的自适应噪声集合经验模态分解结合粒子群优化支持向量机相比,诊断正确率分别提升了4.3%、4.3%和21.7%。

    Abstract:

    Aiming to address the insufficient diagnostic accuracy in existing rolling bearing fault diagnosis research, this paper proposes a rolling bearing fault diagnosis algorithm based on optimized intrinsic mode function adaptive noise-assisted ensemble empirical mode decomposition (CEEMDAN) and variational inference. First, the intrinsic mode function components of the original signal are obtained using CEEMDAN. A sensitive intrinsic mode function component screening algorithm is then designed to optimize the CEEMDAN method, generating a feature vector. For the training dataset, a Gaussian mixture model is established. Through variational inference, the Gaussian mixture model approximates the probability distribution of the feature vector to achieve rolling bearing fault diagnosis. The effectiveness of the proposed algorithm is validated through examples. Compared with CEEMDAN combined with variational inference, local feature scale decomposition combined with variational inference, and optimized CEEMDAN combined with particle swarm optimization support vector machine, the diagnostic accuracy is improved by 4.3%, 4.3% and 21.7%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

孟事业,罗倩.基于CEEMDAN优化的轴承故障变分推断诊断算法[J].电子测量技术,2023,46(22):94-101

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码