基于改进Faster RCNN的射线图像焊缝 缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

1.西南石油大学计算机科学学院 成都 610500; 2.西南石油大学电气信息学院 成都 610500

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

四川省科技计划项目(2019CXRC0027)资助


Weld defect detection method of ray image based on improved Faster RCNN
Author:
Affiliation:

1.School of Computer Science, Southwest Petroleum University, Chengdu 610500, China;2.School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu 610500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对X射线图像中小目标缺陷检测和多尺寸缺陷检测的问题,提出一种基于改进Faster RCNN的焊缝缺陷检测算法。首先,该算法采用ResNet50、特征金字塔网络作为Faster RCNN检测网络的主干网络,达到在多个特征图上检测不同尺寸缺陷的目的;然后在主干网络前增加背景减去网络层,来降低图像背景对小目标缺陷的干扰;接着利用三支路区域推荐网络层细化原始区域推荐网络层中候选框的预测任务,从而减少候选框数量、优化检测速度;最后对网络中卷积层的数量进行微调,增强网络特征提取能力。实验结果表明,改进网络的均值平均精度和每张图像检测速度分别为83.09%、20.8 ms,相比改进前的网络,预设的锚框增加了10 779个,检测速度仅仅降低了3.1 ms,均值平均精度提高了19.43%。改进网络在保证检测速度的基础上,有效提高了对小目标缺陷和多尺寸缺陷的检测效果。

    Abstract:

    Aiming at the issue of small target defect detection and multi-size defect detection in X-ray images, a weld defect detection algorithm based on improved Faster RCNN is proposed. Firstly, the algorithm utilizes ResNet50 and feature pyramid network as the backbone network of Faster RCNN for detecting defects of different sizes on multiple feature maps. Then, the background subtraction layer is added before the backbone network to reduce the interference of the image background on the small target defects. Then, the three-branch region proposal network layer refine the predictions of candidate boxes in the original region proposal network layer, thereby reducing the number of candidate boxes and optimizing the detection speed. Finally, the number of convolutional layers in the network is fine-tuned to enhance the network’s feature extraction ability. The experimental results show that the improved network has a mean average precision of 83.09% and a single image detection speed of 20.8 ms. Compared to the network before improvement, the preset anchor boxes are increased by 10 779, and the mean average precision is increased by 19.43%, while the detection speed is only decreased by 3.1 ms. The improved network effectively improves the detection effect of small target defects and multi-size defects while maintaining detection speed.

    参考文献
    相似文献
    引证文献
引用本文

罗仁泽,唐祥,余泓,李华督.基于改进Faster RCNN的射线图像焊缝 缺陷检测方法[J].电子测量技术,2023,46(22):160-168

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码