基于改进SwinIR的条纹图去噪方法
DOI:
CSTR:
作者:
作者单位:

1.湖北汽车工业学院机械工程学院 十堰 442002; 2.中国工程科技十堰产业研究院 十堰 442003

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金(51475150,51675167)、教育部人文社科项目(20YJCZH150)、湖北自然科学基金(2020CFB755)项目资助


Fringe pattern denoising method based on improved SwinIR
Author:
Affiliation:

1.School of Mechanical Engineering, Hubei University of Automotive Technology,Shiyan 442002, China; 2.China Engineering Science and Technology Shiyan Industrial Research Institute,Shiyan 442003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    条纹图的去噪处理可以恢复条纹图的边界信息,从而提高条纹图三维测量结果的准确性。为了进一步恢复条纹图的边界信息,提出了一种改进SwinIR神经网络的条纹图去噪方法。首先,引入Inception模块,对网络中的RSTB模块进行结构优化,以提高网络的局部特征提取能力。其次,引入多个残差块到网络整体结构中,缓解网络过深带来的梯度消失的问题。实验采用高密度区域条纹进行去噪性能测试,当噪声水平σ为50时,改进SwinIR算法的PSNR值可达31.96、SSIM值为0.995 5、去噪时间为4.035 s。并且,本文改进SwinIR算法与其他7种代表性算法进行实验对比,结果显示本文方法在不同噪声水平下,去噪性能均为最优。

    Abstract:

    The denoising process of fringe pattern can recover the boundary information of fringe pattern and thus improve the accuracy of fringe pattern 3D measurement results. In order to recover the boundary information of the fringe pattern as much as possible, a fringe pattern denoising method is proposed to improve the SwinIR neural network. First, the Inception module is introduced and the structure of the RSTB module in the network is optimized to improve the local feature extraction capability of the network. Second, multiple residual blocks are introduced to the overall structure of the network to alleviate the problem of gradient disappearance caused by over-deepening of the network. The de-noising performance was tested by using high-density area stripes. When the noise level is 50, the PSNR value of the improved SwinIR algorithm is 31.96, the SSIM value is 0.995 5, and the denoising time is 4.035 s. Moreover, the improved SwinIR algorithm is compared with seven other representative algorithms, and the results show that the denoising performance of this method is optimal at different noise levels.

    参考文献
    相似文献
    引证文献
引用本文

张伟,张俊杰,宋杰,吕圣,王生怀.基于改进SwinIR的条纹图去噪方法[J].电子测量技术,2023,46(23):105-111

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-21
  • 出版日期:
文章二维码