基于特征选择的时空融合交通流预测
DOI:
CSTR:
作者:
作者单位:

1.青岛理工大学机械与汽车工程学院 青岛 266525; 2.青岛理工大学土木工程学院 青岛 266525

作者简介:

通讯作者:

中图分类号:

U491.14

基金项目:

国家自然科学基金(52272311)、山东省自然科学基金面上项目(ZR2020MG017)资助


Spatiotemporal fusion traffic flow prediction based on feature selection
Author:
Affiliation:

1.School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266525, China; 2.School of Civil Engineering, Qingdao University of Technology, Qingdao 266525, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前交通流预测模型在提取数据特征时容易忽略工作日和休息日交通流变化趋势存在差异的不足,提出一种基于特征选择的时空融合交通流预测模型STTFXGB。该模型从数据和模型两个层面提高模型对数据特征的提取。首先,利用皮尔逊相关系数计算数据间的相关性,并根据相关性的大小将数据集重新划分为工作日和休息日数据集。其次,采用能够体现全局关系的邻接矩阵结合自注意力机制构建图自注意力机制,提取路网数据的全局空间特征,并结合自注意力机制构建“三明治”结构的时空特征提取模块,基于Transformer模型构建时空融合模型STTF。然后,在STTF模型末端,利用XGBoost模型筛选多头注意力机制提取的特征,构建STTF-XGB模型。最后,在英国高速公路交通流数据集上对模型进行实验,结果表明:STTF-XGB在中短期的预测中较时空融合预测模型GCN-BiLSTM和GAT-BiLSTM在预测精度上提升约5%~10%,且预测误差波动范围最小,能够有效用于交通流预测。

    Abstract:

    To address the shortcomings of the current traffic flow prediction model in extracting data features that easily ignore the differences in traffic flow trends between weekdays and rest days, a feature selection-based spatio-temporal fusion traffic flow prediction model STTF-XGB is proposed. The model improves the extraction of data features by the model from both data and model levels. First, Pearson correlation coefficient is used to calculate the correlation between data, and the data set is reclassified into weekday and rest day data sets according to the magnitude of the correlation. Secondly, the global spatial features of the road network data are extracted by using the adjacency matrix which can reflect the global relationship and the self-attention mechanism to build a graph self-attention mechanism, and the spatio-temporal feature extraction module with a "sandwich" structure is built based on the Transformer model to build a spatio-temporal fusion model STTF. Then, at the end of the STTF model, the XGBoost model is used to filter the features extracted by the multi-head attention mechanism to build the STTF-XGB model. Finally, the model was experimented on the UK freeway traffic flow dataset, and the results show that STTF-XGB can be effectively used for traffic flow prediction with about 5%~10% improvement in prediction accuracy over the GCN-BiLSTM and GAT-BiLSTM model in the short and medium term, and the prediction error fluctuation range is minimal.

    参考文献
    相似文献
    引证文献
引用本文

李昕光,王珅,曲大义.基于特征选择的时空融合交通流预测[J].电子测量技术,2023,46(22):87-93

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码