多策略SMA-BP神经网络的空气质量指数预测
DOI:
CSTR:
作者:
作者单位:

1.湖北工业大学机械工程学院 武汉 430068; 2.湖北省现代制造质量工程重点实验室 武汉 430068

作者简介:

通讯作者:

中图分类号:

TP393

基金项目:

国家自然科学基金(51875180)项目资助


Air quality index prediction by multi-strategy SMA-BP neural network
Author:
Affiliation:

1.School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; 2.Hubei Province Key Laboratory of Modern Manufacturing Quality Engineering, Wuhan 430068, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对BP神经网络预测精度不佳、预测结果不稳定的问题,提出改进黏菌算法(ISMA)优化BP神经网络的预测模型,引入Tent混沌映射克服初始种群分布不均的缺点,针对黏菌算法位置更新的随机性和后期容易陷入局部最优等问题引入领导者策略和莱维飞行策略,利用自适应反向学习策略扩大搜索空间并用23组基准函数加以测试。随后利用ISMA算法优化BP网络模型的初始权值和阈值,构建ISMA-BP空气质量指数预测模型,最后将收集到的779组空气质量指数数据代入预测模型中进行测试分析,实验结果表明,与BP神经网络模型、GWO-BP、SMA-BP模型相比,ISMA-BP模型对AQI的预测具有更高的精度,其预测的均方误差为3.840 2,平均绝对误差分别为1.507 8。

    Abstract:

    Aiming at the problems of poor prediction accuracy and unstable prediction results of BP neural network, an improved slime mold algorithm (ISMA) is proposed to optimize the prediction model of BP neural network, and Tent chaotic mapping is introduced to overcome the shortcomings of uneven initial population distribution. The leader strategy and Levy flight strategy are introduced to solve the randomness of the position update and the problem of falling into local optimality. The adaptive reverse learning strategy is used to expand the search space and 23 groups of benchmark functions are tested. Then the ISMA algorithm was used to optimize the initial weights and thresholds of the BP network model, and the ISMA-BP Air quality index prediction model was constructed. At last, 779 sets of AQI data were collected and put into the prediction model for testing and analysis. The experimental results showed that, Compared with BP neural network model, GWO-BP model and SMA-BP model, ISMA-BP model has higher accuracy in predicting AQI. The mean square error of ISMA-BP model is 3.840 2, and the mean absolute error is 1.507 8 respectively.

    参考文献
    相似文献
    引证文献
引用本文

文昌俊,陈洋洋,何永豪,陈凡.多策略SMA-BP神经网络的空气质量指数预测[J].电子测量技术,2023,46(22):78-86

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码