融合Swin Transformer的遥感影像建筑物变化检测
DOI:
CSTR:
作者:
作者单位:

1.桂林电子科技大学广西精密导航技术与应用重点实验室 桂林 541004; 2.桂林电子科技大学信息与通信学院 桂林 541004

作者简介:

通讯作者:

中图分类号:

TP751.1

基金项目:

国家自然科学基金(61861008,62061010,62161007)、广西自然科学基金(2018GXNSFAA294054,2019GXNSFBA245072)、桂林市科技局“桂林市国家可持续发展议程创新示范区建设”重点项目(20190219-1)资助


Remote sensing image building change detection by incorporating Swin Transformer
Author:
Affiliation:

1.Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology,Guilin 541004, China;2.Information and Communicaiton School, Guilin University of Electronic Technology,Guilin 541004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对不同时序遥感影像中多种地物类型的变化信息杂乱、背景复杂导致难以清晰地提取关键特征的问题,本文提出了一种将Swin Transformer与孪生网络融合实现建筑物变化检测的新方法。该方法通过4个Swin Transformer Block的结构来获取不同层次的特征,针对不同尺度的特征图进行差异计算,以获取变化特征图。此外,在本文算法的基础上还引入了差异特征融合模块和边缘感知注意力模块。差异特征融合模块能更好地表达不同感受野下的特征,提高对细节特征和全局特征的融合效果;边缘感知注意力模块细化特征提取时特征图中建筑物的边缘特征,扩大模型的局部感受野,增强模型对于细节信息的检测能力,从而提高网络结构对建筑物边缘特征的提取能力。实验结果表明,本文方法与现有经典变化检测网络全卷积早期融合FC-EF相比,在两个公开数据集上的F1值分别提高了7.36%和19.67%。

    Abstract:

    Aiming at the problem that it is difficult to extract key features clearly due to the cluttered change information of multiple feature types in different time-series remote sensing images and complex backgrounds, this paper proposes a new method of fusing Swin Transformer with twin networks to achieve building change detection. The method obtains features at different levels through the structure of four Swin Transformer blocks, and performs difference calculations for feature maps at different scales to obtain change feature maps. In addition, a difference feature fusion module and an edge-aware attention module are introduced based on the algorithm in this paper. The difference feature fusion module can better express the features under different perceptual fields and improve the fusion effect on detailed features and global features; the edge-aware attention module refines the edge features of buildings in the feature map during feature extraction, expands the local perceptual field of the model, enhances the detection ability of the model for detailed information, and thus improves the extraction ability of the network structure for building edge features. The experimental results show that the F1 values of this paper′s method are improved by 7.36% and 19.67% on two public datasets, respectively, compared with the existing classical change detection network FC-EF.

    参考文献
    相似文献
    引证文献
引用本文

于政尧,黄建华,孙希延,罗明明,万逸轩.融合Swin Transformer的遥感影像建筑物变化检测[J].电子测量技术,2023,46(22):139-147

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码