基于YOLOv7的驾驶人使用手机与 抽烟行为识别方法
DOI:
CSTR:
作者:
作者单位:

1.新疆大学智能制造现代产业学院 乌鲁木齐 830017; 2.新疆大学交通运输工程学院 乌鲁木齐 830017

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

自治区重点研发计划项目(2022B01015-3)、重点实验室开放课题(2023ZDSYSKFKT06)项目资助


Identification method of mobile phone use and smoking behavior of drivers based on YOLOv7
Author:
Affiliation:

1.School of Intelligent Manufacturing Modern Industry, Xinjiang University,Urumqi 830017, China; 2.School of Transportation Engineering,Xinjiang University, Urumqi 830017, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机动车驾驶人驾驶过程中使用手机与抽烟行为威胁交通安全的问题,本文提出了一种基于YOLOv7的改进网络模型。首先使用MobileNetv3主干网络代替原版YOLOv7的主干网络,减少模型参数量与计算量,提升模型的处理速度;利用深度可分离卷积、亚像素卷积搭建改进特征金字塔分支并与原版特征金字塔的输出特征层进行融合,丰富特征信息,增强特征提取效果;最后利用特征加强模块对融合特征层进行强化,提升特征层通道及区域两个方面的关注度。实验结果表明,改进网络模型的平均精度均值为95.33%,检测速度为75.31 fps,相比于原版YOLOv7网络的平均精度均值提高了6.84%,检测速度增加了17.25 fps。改进网络模型在满足实时检测的基础上具有较高的检测精度,能够实现对驾驶人使用手机与抽烟行为的实时、准确识别。

    Abstract:

    To address the problem of motorists using cell phones and smoking behaviors during driving threatening traffic safety, this paper proposes an improved YOLOv7-based network model . Firstly, the MobileNetv3 backbone network is used instead of the original YOLOv7 backbone network to reduce the number of model parameters and computation and improve the processing speed of the model. The depth separable convolution and sub-pixel convolution are used to build an improved feature pyramid branch and fuse it with the output feature layer of the original feature pyramid to enrich the feature information and enhance the feature extraction effect. Finally, the feature enhancement module is finally used to enhance the fused feature layer to improve the attention of both the feature layer channels and regions. The experimental results show that the mean average precision of the improved network model is 95.33%, and the detection speed is 75.31 frames per second. Compared with the original YOLOv7 network, the mean average precision is increased by 6.84%, and the detection speed is increased by 17.25 frames per second. It has higher detection accuracy on the basis of satisfying real-time detection and can realize real-time and accurate detection of drivers′ use of cell phones and smoking behavior.

    参考文献
    相似文献
    引证文献
引用本文

娄文,郭杜杜,张杰,赵亮,徐勤功.基于YOLOv7的驾驶人使用手机与 抽烟行为识别方法[J].电子测量技术,2023,46(21):123-131

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-04
  • 出版日期:
文章二维码