基于混合空洞卷积与特征融合的肝脏肿瘤图像分割
DOI:
CSTR:
作者:
作者单位:

1.中南民族大学计算机科学学院 武汉 430074; 2.农业区块链与智能管理湖北省工程研究中心 武汉 430074; 3.湖北省制造企业智能管理工程技术研究中心 武汉 430074

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家民委中青年英才培养计划 (MZR20007)、新疆维吾尔自治区区域协同创新专项(科技援疆计划)(2022E02035)、湖北省中医药管理局中医药科研项目(ZY2023M064)、武汉市知识创新专项曙光计划项目(SZY23003)资助


Improved lightweight YOLOv4 target detection algorithm
Author:
Affiliation:

1.College of Computer Science, SouthCentral Minzu University,Wuhan 430074, China;2.Hubei Provincial Engineering Research Center of Agricultural Blockchain and Intelligent Management, Wuhan 430074, China;3.Hubei Provincial Engineering Research Center for Intelligent Management of Manufacturing Enterprises,Wuhan 430074, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决肝脏肿瘤图像中肝脏肿瘤形状复杂、与四周正常组织之间的边界模糊而导致分割模型准确率低的问题,本文提出一种基于混合空洞卷积与高层特征融合的肝脏肿瘤图像分割模型(Hybrid Dilated Convolutions and High-level Feature Fusion model,HFU-Net)。该模型加入高层特征融合再校准模块,丰富U-Net中跳跃连接部分,使其利用特征融合与压缩注意力机制对特征信息校准,提升网络编码器的特征信息获取能力。并且,为进一步提高网络各层的特征提取效果,使用混合空洞卷积块替换原模型编码网络中传统卷积模块,以获得密集的肿瘤特征信息,扩大网络感受野。实验结果表明,与U-Net算法相比,Dice系数、体积重叠误差(VOE)、灵敏度、精确率指标均有较好效果,分别提高了3.3%,4.59%,4.39%和2.04%该模型显著提高肝脏肿瘤图像分割精度,为肝癌诊断与治疗提供可靠依据。

    Abstract:

    In order to solve the problem of low accuracy of segmentation model caused by the complex shape of liver tumor and blurred boundary with surrounding normal tissues in the liver tumor image, this paper proposes a novel liver tumor image segmentation model HFU-Net based on hybrid dilated convolutions and high-level feature fusion. In this model, a high-level feature fusion recalibration module is added to enrich the skip connection part of U-Net, so that it can calibrate the feature information by using feature fusion and squeeze and attention module to enhance the ability of network encoder to obtain feature information. And, in order to further improve the feature extraction effect of each layer of the network, the conventional convolution module in the original model’s encoding network is replaced by the hybrid dilated convolution to obtain dense tumor feature information and expand the network’s receptive field. The experimental results show that Dice coefficient, volumetric overlap error (VOE), sensitivity and precision are improved by 3.3%, 4.59%, 4.39% and 2.04% respectively compared with the U-Net algorithm. The proposed model significantly improves the segmentation precision of liver tumor images, and provides a reliable basis for the diagnosis and treatment of liver cancer.

    参考文献
    相似文献
    引证文献
引用本文

帖军,朱祖桐,郑禄,徐胜舟,马佳婷.基于混合空洞卷积与特征融合的肝脏肿瘤图像分割[J].电子测量技术,2023,46(22):122-130

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码