基于TCN-BiGRU的锂离子电池健康状态评估
DOI:
CSTR:
作者:
作者单位:

1.四川大学电气工程学院 成都 610065; 2.四川公路桥梁建设集团有限公司勘察设计分公司 成都 610041; 3.重庆邮电大学自动化学院 重庆 400065v

作者简介:

通讯作者:

中图分类号:

TM912

基金项目:


Lithium-ion battery state of health estimation based on TCN-BiGRU
Author:
Affiliation:

1.College of Electrical Engineering,Sichuan University,Chengdu 610065, China;2.Survey and Design Company of Sichuan Road & Bridge(Group) Co. Ltd,Chengdu 610041,China;3.College of Automation, Chongqing University of Posts and Telecommunications,Chongqing 400065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确估算锂离子电池的健康状态可以有效保障锂离子电池的安全使用,但现有锂离子电池SOH评估方法存在评估精度不理想等问题。为此,本文提出了一种基于TCN和BiGRU相结合的电池SOH评估方法。首先,从电池充电数据中提取构建健康因子,并验证其与电池容量之间的相关关系;然后,利用TCN模型处理长序列依赖数据并开展特征提取,同时在该模型中添加Dropout层以防止过拟合,提升了模型的泛化性;最后,通过BiGRU模型进行历史数据特征建模并对数据退化趋势进行估计,最终实现对锂离子电池SOH的精确评估。利用实验室搭建的电池退化试验台获取的四组电池退化数据进行方法验证,结果表明所提模型所估计的SOH在决定系数、绝对平均误差以及均方根误差3个指标上的均值分别为0.990 4、0.017 1、0.022 3,明显优于其他对比方法。

    Abstract:

    Accurate estimation of the state of health (SOH) of lithium-ion batteries is the critical to ensure the safety of lithium-ion batteries. However, the existing methods for SOH estimation of lithium-ion batteries exist unsatisfactory evaluation accuracy. To solve this problem, this paper proposes a battery SOH estimation method based on the combination of temporal convolutional network (TCN) and bidirectional gated recurrent unit (BiGRU). Firstly, the health factor is extracted from the battery charging data and its correlation with the battery capacity is discussed. Then, the TCN model is used to process the long series dependent data and carry out feature extraction, and also a Dropout layer is added to the model to prevent overfitting and improve the generalization. Finally, the BiGRU model is used to model the historical data features and predict the data degradation trend. In addition, the BiGRU model is used to model the historical data characteristics and estimate the data degradation trend to achieve an accurate assessment of the SOH of lithium-ion batteries. The results show that the proposed method obtains the better average of coefficient of determination (0.990 4), absolute mean error (0.017 1), and root mean square error (0.022 3) than other comparative methods under four batteries.

    参考文献
    相似文献
    引证文献
引用本文

刘少卿,李帅,苗建国,苗强.基于TCN-BiGRU的锂离子电池健康状态评估[J].电子测量技术,2023,46(23):68-76

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-21
  • 出版日期:
文章二维码